
Reaper Plugins for the
LilypondToBandVideoConverter

(Version 1.1)

Dr. Thomas Tensi

2023-05-10

CONTENTS

Contents

1 Introduction 3

1.1 Overview . 3

1.2 Available Scripts . 3

2 Installation of the Plugins 5

3 Description of the Plugins 6

3.1 Motivation for the Plugins . 6

3.2 AdaptTracksToLTBVCConventions 7

3.3 ExportLilypond . 11

3.4 ImportMidi . 13

3.5 MakeRegionsFromRegionStructureTrack 15

3.6 NormalizeStructuredVoiceTracks 16

3.7 AdjustSoXE�ectNames . 17

4 Demo Song 18

5 Coping with Errors 19

References 19

2 Dr. Thomas Tensi

CHAPTER 1. INTRODUCTION

1. Introduction

1.1 Overview

The �Reaper Plugins for the LilypondToBandVideoConverter� package pro-
vides Lua plugins for being used in the Reaper DAW [Reaper]; they assist in
using the LilypondToBandVideoConverter tool chain for generating notation
videos from arrangement text �les.

LilypondToBandVideoConverter (or short ltbvc, [LTBVC]) is a command line
audio processing tool written in Python for Unix, Windows and Mac OS that
uses standard command-line tools to convert a music piece (a song) written
in the lilypond notation to

� a PDF score of the whole song,

� several PDF voice extracts,

� a MIDI �le with all voices (with additional preprocessing applied to
achieve some humanization),

� audio mix �les with several subsets of voices (speci�ed by con�gura-
tion), and

� video �les for several output targets visualizing the score notation pages
and having the mixes as mutually selectable audio tracks as backing
tracks.

Because that command-line oriented approach is a bit tedious, the current
package provides several scripts for the Reaper DAW to make this process
easier.

1.2 Available Scripts

The following scripts are provided:

AdaptTracksToLTBVCConventions.lua:

applies speci�c theme and layouts to the tracks and routes audio ac-
cording to LTBVC conventions,

AdjustSoXE�ectNames.lua:

sets the e�ect names of the SoX e�ects to the command line strings
required for processing outside of the Reaper DAW,

Reaper E�ect Plugins for LTBVC, v1.1 3

1.2. AVAILABLE SCRIPTS

ExportLilypond.lua:

transforms the notes of the selected MIDI item into a textual lilypond
note/chord sequence and returns them in a text box,

ImportMidi.lua:

scans the current project for tracks with single MIDI items with names
conforming to some pattern and replaces those by the corresponding
track in an associated MIDI �le �ltering out unwanted MIDI items
before import,

MakeRegionsFromRegionStructureTrack.lua:

either makes regions based on a track with structural MIDI items or
generates that region structure track with MIDI items from the current
regions, and

NormalizeStructuredVoiceTracks.lua:

scans all tracks with some speci�c pre�x and normalizes their enclosed
MIDI items by removing reverb, chorus and delay control codes, setting
note velocities to some default and quantizing the note start and end
positions.

4 Dr. Thomas Tensi

CHAPTER 2. INSTALLATION OF THE PLUGINS

2. Installation of the Plugins

The installation is as follows:

1. Copy the Reaper Plugins for the LilypondToBandVideoConverter archive
from the repository in [LTBVCPlugins] and unpack it to some tempo-
rary directory.

2. Close the Reaper application (if open).

3. Copy the lua-�les from the archive subdirectory src into the Lua sub-
directory of the Reaper installation (typically in \Program Files\Reaper\Lua
or /Applications/Reaper.app/Lua in MacOS).

4. If helpful, also copy the documentation �le from the archive subdirec-
tory doc to the Lua sub-directory.

5. Restart Reaper. You should now be able to access the scripts as actions
in the Actions menu of Reaper. It is helpful to de�ne some keyboard
shortcuts for those actions for a quicker access.

Alternatively � and a little bit easier � you can use the ReaPack plugin
[ReaPack] and do an automatic install via the index.xml �le in the reposi-
tory [LTBVCPlugins]. After the installation via ReaPack all the scripts can
be found in the action list of the Reaper installation via the pre�x LTBVC-
Plugins_; so, for example, the lilypond export script has the action name
LTBVCPlugins_ExportLilypond.lua.

Reaper E�ect Plugins for LTBVC, v1.1 5

3. Description of the Plugins

3.1 Motivation for the Plugins

Motivation for all the scripts presented here is to allow input and adaptation
of MIDI notes of some arrangement in the Reaper DAW, but then easily
integrate that into a ltbvc pipeline. Part of this approach is also that one
can quickly import the tracks of the generated MIDI �le from that external
pipeline for checking whether the ltbvc and the DAW project are in sync.

To be able to do this, one should �rst organize MIDI items in the DAW corre-
sponding to the voices and the musical structure of the piece into structured

voice tracks. It is also helpful when the names of those tracks adhere to some
naming pattern (because one of the tools relies on that).

When you have your project organized in such a way is then possible to

� re�ect the musical structure as regions based on the items in some track
(see section 3.5),

� sets the tracks' layouts in the mixer according to LTBVC conventions
and routes the audio accordingly (see section 3.2),

� normalize the structured voice tracks by removing unwanted control
codes and quantizing the note positions to a raster compatible with
the later lilypond export (see section 3.6),

� export MIDI items in the structured voice tracks as lilypond fragments
(see section 3.3),

� repeatedly import the MIDI �le generated by ltbvc into special project
tracks e.g. for a detailed comparison with the structured voice tracks
(see section 3.4), and

� adjust the e�ect names of the SoX e�ects in the DAW to the com-
mand line fragments needed when doing an external rendering (see
section 3.7) and also make all of them available in a dialog windows.

Figure 1 shows the structuring of the demo song from the ltbvc. Note that
this Reaper DAW �le is also included in the current distribution.

6 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE PLUGINS

Figure 1: Structured MIDI Representation of Demo Song from ltbvc

3.2 AdaptTracksToLTBVCConventions

When a project in a DAW is aimed at emulating the ltbvc tool chain, it is
helpful to organize the tracks in a certain manner.

There are seven groups of tracks:

� (optional) tracks with original audio as reference material,

� structured MIDI voice tracks that contain MIDI data for the voices
and have loops or aliases indicating the musical structure of voice/song
(with MIDI converted to audio by some VST instrument),

� MIDI voice tracks generated by the �midi� phase of the external tool
chain (where all structure is expanded, but the MIDI data should be
almost identical to the structured MIDI tracks see 3.4), which also have
their MIDI converted to audio by some VST instrument,

� raw audio voice tracks generated by the �rawaudio� phase of the ex-
ternal tool chain (where MIDI is rendered as audio but no SoX e�ects
have been applied),

� plain e�ect voice tracks containing all the SoX e�ects applied to each
voice similar to the �re�nedaudio� phase of the external tool chain,

� re�ned audio voice tracks generated by the �re�nedaudio� phase of the
external tool chain (as reference tracks), and

� �nal audio voice tracks where re�ned audio is panned and has its volume
adjusted for the �nal mix

Each group has its own �folder track� such that they can be individually
muted.

Reaper E�ect Plugins for LTBVC, v1.1 7

3.2. ADAPTTRACKSTOLTBVCCONVENTIONS

Figure 2: Audio Routing Along Voice Tracks

This project structure seems to be overly complex, but the idea behind that
is to factor out commonalities between the tracks.

For each voice the following is done (as shown in �gure 2):

� The structured MIDI track, the generated MIDI track and the raw
audio track are routed into the plain SoX e�ect track for that voice.
Routing is pre-FX for the raw audio track and post-FX for both the
MIDI tracks.

This means that the identical SoX e�ect chain is applied to all those
audio source. Because the MIDI tracks have a FluidSynthPlugin as
their MIDI-to-audio converter, in principle all those tracks should pro-
vide the same audio signal (apart from the missing humanization in
the structured track).

� The output of the voice SoX e�ect track and the re�ned audio track are
both routed into the voice mix track to have pan and volume applied
for the �nal mix. Routing is pre-FX for the re�ned audio track and
post-FX for the e�ect track.

As an additional trick the re�ned audio track is phase inverted. This
means that when both e�ect track and re�ned audio track deliver some
audio signal, those should completely cancel out. This helps when
checking whether the internal and external e�ects chain is identical.

� Finally all voice mix tracks are mixed into the (stereo) master track
post-fader.

8 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE PLUGINS

It is also clear, that not all tracks need all kinds of interaction, for example
in the mixer panel. An e�ect track or a raw audio track does not have to
have a volume fader or a pan control because those are handled in the voice
mix track. A raw or re�ned audio track does not need any e�ects: its media
is just routed into another track following.

Hence it is helpful to change the appearance of the tracks accordingly. Reaper
allows to customize the track layout as required, so there is a layout style to
be preferably applied to an ltbvc project.

The whole proceedure looks tedious: routing tracks and setting their layout
to re�ect their function manually.

Fortunately the script AdaptTracksToLTBVCConventions does all that. It con-
nects tracks as given in �gure 2 via some naming conventions and also applies
track layouts to them.

Both naming convention and layout assignment is handled by the script based
on a so-called �con�guration �le�. This is a text �le that de�nes several vari-
ables and is either located in the script directory or in the directory .luaset-
tings in the user's home directory. (For a detailed description of con�guration
�les see the ltbvc documentation [LTBVC].)

The variables relevant for this script are trackKindToNamePatternMap, track-
NamePatternWithParentDisabledList, and trackNamePatternToConnectionData-
Map.

trackNamePatternToConnectionDataMap tells the routing partners for speci�c
name patterns signifying track categories (e.g. e�ects or raw audio tracks).
The variable maps each of those category track name pattern (in convention
of the programming language Lua) as the connection source onto a capturing
pattern giving the destination track name together with the position of the
send and the information whether some phase inversion is done.

For example, the map entry

"'^E%s+(%S.*)' : ['^F%s+%1', 'postFX ', true],"

tells that an e�ect track (starting with an �E� character and some white space
followed by the voice name) is connected to a correspondig track starting with
an �F� letter and some white space followed by the same track name. Routing
is post-FX and a phase inversion is also applied.

Hence the default variable de�nition matching �gure might look like

trackNamePatternToConnectionDataMap = "{"

"'^E%s+(%S.*)' : ['^F%s+%1', 'postFX ', false],"

"'^M%s+(%S.*)' : ['^E%s+%1', 'postFX ', false],"

"'^RA%s+(%S.*)': ['^E%s+%1', 'preFX ', false],"

"'^RF%s+(%S.*)': ['^F%s+%1', 'preFX ', true],"

"'^S%s+(%S.*)' : ['^E%s+%1', 'postFX ', false]"

"}"

That default naming convention for the track routing assumes track names

Reaper E�ect Plugins for LTBVC, v1.1 9

3.2. ADAPTTRACKSTOLTBVCCONVENTIONS

TRACK KIND TRACK NAME PREFIX

original track O

structured MIDI track S

generated MIDI track M

raw audio track RA

e�ect track E

re�ned audio track RF

mix track M

Figure 3: Default Naming Conventions for Tracks

as given by the table in �gure 3.

The variable trackNamePatternWithParentDisabledList gives a list of patterns
for tracks names that are not directly connected to the master track.

So for example the setting

trackNamePatternWithParentDisabledList = "["

"'^E%s+%S.*$', '^RA%s+%S.*$'," ...

"]"

makes sure that e�ect tracks as well as raw audio track (with the convention
from above!) are not connected to the master track.

trackNamePatternToColorAndLayoutMap is a map with each entry being a
regular expression string mapped onto a pair of colour and name of some
layout in Reaper.

For example, the entry

"'^E%s+': [0xFF8080 , 'gf - Effect Bus ']"

tells that a track with name starting with �E� followed by at least one blank
shall be set to colour light blue (=0xFF8080 in BGR-notation) and to a
layout named �gf - E�ect Bus�.

So the variable could be set to

trackNamePatternToColorAndLayoutMap = "{"

"'^EFFECTS ': [0xFF0000 , 'gc - Grouping without FX '],"

"'^E%s+': [0xFF8080 , 'gf - Effect Bus ']"

"}"

When the script is run on the demo project, the routing is adapted (as shown
in �gure 2) and the mixer will look like shown in �gure 4.

10 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE PLUGINS

Figure 4: Standardized ltbvc Track Layout in Mixer

3.3 ExportLilypond

The command here is applied to some selected MIDI item and transforms
its notes into a textual lilypond note/chord sequence and �nally returns it in
the Reaper message box. One can then copy the text into the clipboard and
insert it into a lilypond �le for the song and later processing by the ltbvc.

The notes produced by the script are in English notation. That means for
example, an f♯ (f sharp) note is �fs�, an e♭ (e f lat) note is �ef�. The algorithm
analyzes the underlying MIDI notes along the measures and groups them into
the least possible number of notes still conforming to score guidelines. Chords
are automatically detected.

This generation of notes is dependent on a line in the project settings de�ning
the key. E.g. the line key=f in �gure 5 de�nes the key of some song to be
�f� (major). Only major keys can be de�ned, but, however, this only a�ects
whether accidentals used shall be sharps or �ats.

Figure 5: Key De�nition for ExportLilypond

All instruments have a default octave de�ned by their names, where the note
sequences start as follows:

� bass, keyboardBottom → C1,

� keyboard → C2,

Reaper E�ect Plugins for LTBVC, v1.1 11

3.3. EXPORTLILYPOND

Figure 6: Exporting a Bass MIDI Item

� guitar, keyboardTop, strings → C3,

� vocals → C4, and

� drums, percussion → drum clef

So, for example, a guitar fragment will start with the lilypond text \relative c'
(= C3), a bass fragment with \relative c, (= C1).

Activating the action on some MIDI item puts the resulting MIDI fragment
into the message box as shown in �gure 6.

Doing the same for some drum MIDI item puts the resulting MIDI fragment
also into the message box as shown in �gure 7, but uses drum notation
instead. This is triggered by the item name starting with either �drums � or
�percussion �.

The durations in the output are optimized for being conformant to standard
notation practice and also switch from and to triplets when appropriate.

A note will be split into parts tied together when its duration is not allowed
its start position due to notation standards. For example, when in a measure
a quarter note follows a sixteenth note, it will be split into a sixteenth note
and a dotted eighth note to conform to notation guidelines. Figure 8 shows
how a simple note sequence is transformed by the algorithm.

Note that the minimum note duration allowed is a 32nd-note or a 32nd-triplet.
If the item converted is not quantized accordingly, typically some strange note
durations like �e?77?� will occur in the result where this signi�es a note with
a duration of 77 MIDI ticks (which is 77/240 of a quarter note) that cannot
be split into meaningful durations.

12 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE PLUGINS

Figure 7: Exporting a Drums MIDI Item

notes before split notes after split

Figure 8: Splitting Notes on Musical Raster Positions

3.4 ImportMidi

The ltbvc pipeline produces a temporary MIDI �le with some humanization
applied. It is helpful to import that �le into tracks repeatedly to see the
consequences of changes in the lilypond �le.

Doing this manually is tedious, especially because MIDI tracks in the project
may be at arbitrary positions.

Fortunately the tracks generated by the ltbvc have a predictable structure
and naming of tracks. Hence this script scans the DAW project for tracks
conforming to that convention: those are tracks with a single MIDI item,
where its item name ends with �.mid� and it gives the voice name followed
by the name of the MIDI �le.

For example, a MIDI item �bass - wonderful_song-std.mid� is the bass voice
in an imported MIDI �le �wonderful_song-std.mid� from the ltbvc.

For the import the location of the MIDI �le has to be speci�ed; this is done by
the con�guration variable midiFilePath in the project settings (see �gure 9).
It gives the relative path of the directory containing the MIDI �le from ltbvc.

The processing by the script is as follows:

Reaper E�ect Plugins for LTBVC, v1.1 13

3.4. IMPORTMIDI

Figure 9: Relative Path De�nition for MIDI Import

Figure 10: �Updateable� MIDI Tracks of Demo Song

� The referenced MIDI �le is imported into new temporary tracks.

� All existing tracks with matching names (��instrument name� - �MIDI
�le name�� are updated from the imported tracks.

� The new temporary tracks are deleted.

� Some �ltering is done on the imported MIDI items: pan, reverb and
volume control codes are removed (because they shall be provided by
DAW controls and e�ects).

� All those items are set to �locked� (because they should not be changed
manually, because they will be overwritten by the next import).

The example song has four MIDI tracks for each of the voices; �gure 10 shows
those tracks, their items with the appropriated names in the demo Reaper
project.

14 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE PLUGINS

3.5 MakeRegionsFromRegionStructureTrack

As mentioned in section 3.3 it is practical to structure the MIDI items ac-
cording to the song structure. Reaper provides so-called regions along the
timeline, which are very helpful in organizing a project.

Unfortunately they are a bit tedious to use: duplicating them or coloring
them requires many clicks even when you use the �Region/Marker Manager�
of Reaper.

The script MakeRegionsFromRegionStructureTrack simpli�es this at the ex-
pense of using another track with the region information encoded into items.
It makes regions from the MIDI items in a track called �STRUCTURE� by
copying their positions and also reuses their coloring and naming. So you
can quickly adjust the MIDI items in the structure track and then regenerate
the regions from it.

It is also possible to vice versa generate that �STRUCTURE� track with this
script.

When the script is started the dialog of �gure 11 appears.

Figure 11: Selection Dialog for MakeRegionsFromRegionStructureTrack

Depending on the selection (assuming you do not select cancel) the following
happens:

� For a selection of �Yes� (create regions) a track called �STRUCTURE�
is searched for. First each region is deleted. Then for each MIDI item
on that track a new region is created having the same start time, end
time, name and color as the item.

� For a selection of �No� (create structure track) a track called �STRUC-
TURE� is searched for and is created if non-existent. Each existing
MIDI item on that track is deleted. Then for each region a new MIDI
item is created on that track having the same start time, end time,
name and color as the region.

Figure 12 shows the structure track and the generated regions for the demo
song.

Reaper E�ect Plugins for LTBVC, v1.1 15

3.6. NORMALIZESTRUCTUREDVOICETRACKS

Figure 12: Regions and Structure Track in Comparison

3.6 NormalizeStructuredVoiceTracks

The list of MIDI items for the structured approach as describe in section 3.3
should be located in tracks that adhere to some naming pattern.

In that case, the script NormalizeStructuredVoiceTracks can be used. It scans
all MIDI items in structured MIDI voice tracks and normalizes their note
velocity, quantizes note to the raster necessary for later export and removes
unwanted MIDI control events.

Only those MIDI items in tracks are considered whose track names conform
to a certain naming pattern. That pattern is � as with other scripts �
de�ned in a line in the project settings using the variable structuredMidi-
TrackNamePattern and it speci�es the regular expression a voice track name
has to match. For example, the line structuredMidiTrackNamePattern="S .*"
in �gure 13 de�nes the name pattern for the voice track names to be �S .*�.
This means the name of a voice structure track must start with a capital �S�
followed by a blank character. Note that that is the default when you do not
specify any pattern.

Figure 13: Settings for Selection of Structured MIDI Tracks

Each MIDI item in the voice structure tracks is transformed as follows:

� Note velocities are set to a default value (80).

� Note positions and lengths are moved to the raster necessary for later
lilypond export by the script Exportlilypond.

16 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE PLUGINS

� MIDI control codes for volume, pan and reverb are removed (because
they shall be provided by DAW controls and e�ects).

3.7 AdjustSoXE�ectNames

In the �re�nedaudio� phase of the external tool chain SoX is used for ap-
plying audio e�ects to the raw audio. In the DAW the SoX plugins from
[SoXPlugins] emulate the external SoX program bit-identically.

When tweaking the SoX plugins, the command lines for the SoX program
can be easily extracted from the DAW. This is done by the script AdjustSoX-
E�ectNames.

The script does two things:

� The correct command line text for the corresponding SoX e�ect is used
as the name of the SoX plugin in the DAW.

� For all tracks containing SoX plugins, track name and the command
line for the e�ects are written into Reaper's message window.

Figure 14 shows an example of the command line generation for a SoX phaser
e�ect.

▼
phaser 0.6 0.66 3 0.6 0.5 -t

Figure 14: Extraction of Command Line Fragment for SoX E�ect Plugin

Reaper E�ect Plugins for LTBVC, v1.1 17

4. Demo Song

Included in this installation is a Reaper demo �le with tracks for the demo
song of the ltbvc.

The following tracks are contained in the project:

� a region structure track,

� structured voice tracks for all four voices (vocals, bass, guitar and
drums) routed to the corresponding e�ect tracks,

� the MIDI tracks from the generated MIDI �le routed to the correspond-
ing e�ect tracks,

� raw audio tracks (generated by the ltbvc pipeline) routed to the corre-
sponding e�ect tracks,

� e�ect tracks enhancing MIDI or raw audio tracks, and

� re�ned audio tracks (generated by the ltbvc pipeline)

Because this project �le should work with a standard Reaper installation
without any additional plugins, the MIDI to audio conversion is done with
the stock ReaSamplOmatic plugin plus some external samples; also the audio
e�ects for re�nement are stock e�ects. This is acceptable for trying out the
plugins described in this document, but does not faithfully reproduce the
sound of the external pipeline.

For a realistic impression of the external MIDI to audio conversion, one also
needs a soundfont player fully compatible with the �uidsynth player [Fluidsynth]
used in the ltbvc pipeline. One candidate is the FluidSynthPlugin that almost
faithfully emulates the external �uidsynth player (apart from some deviations
described in its documentation [FluidSynthPlugin]).

If you want to emulate the SoX e�ects from the external pipeline (as men-
tioned in the ltbvc documentations) you'll have to install speci�c SoX em-
ulation plugins (for example, the SoX plugins from [SoXPlugins]) and then
adapt the e�ect tracks accordingly.

18 Dr. Thomas Tensi

CHAPTER 5. COPING WITH ERRORS

5. Coping with Errors

If one of the scripts does not work as expected or even issues an error message,
how can you �nd out what really went wrong?

All the scripts do some �ne-grained entry-exit-tracing of relevant function
calls into a log �le; its last lines should give you some indication about the
error.

The log �les are written into a directory given by the environment variables
REAPERLOGS, TEMP and TMP (in the order given). If none of those vari-
ables is set, the directory �/tmp� is used.

The log �le name is �reaper_� followed by the script name, so, for example,
the script exportLilypond writes its log to the �le �reaper_exportLilypond.log�
in the directory given by one of the environment variables given above.

Figure 15 shows how a log �le looks like. Each line shows either an entry of
a function (�>>�), an exit from a function (�<<�) and a log line within a
function (�−−�) together with a time indication.

Figure 15: Extract from a Log File (for ImportMidi)

Reaper E�ect Plugins for LTBVC, v1.1 19

BIBLIOGRAPHY

Bibliography

[Fluidsynth] FluidSynth - Software synthesizer based on the Sound-

Font 2 speci�cations.
https://�uidsynth.org

[FluidSynthPlugin] Thomas Tensi.
FluidSynth-Plugins

https://github.com/prof-spock/FluidSynthPlugin

[LTBVC] Dr. Thomas Tensi.
LilypondToBandVideoConverter - Generator for Nota-

tion Backing Track Videos from Lilypond Files.

https://github.com/prof-spock/LilypondToBandVideoConverter

[LTBVCPlugins] Dr. Thomas Tensi.
Reaper Plugins for the LilypondToBandVideoConverter.

https://github.com/prof-spock/Reaper-LTBVC-Plugins

[ReaPack] Christian Fillion.
ReaPack: Package manager for REAPER.

https://reapack.com

[Reaper] Cockos Incorporated.
Reaper Digital Audio Workstation.

https://reaper.fm

[SoXPlugins] Dr. Thomas Tensi.
SoX Plugins - A Reimplementation of the SoX Comman-

dline Processor as DAW Plugins.

https://github.com/prof-spock/SoX-Plugins

20 Dr. Thomas Tensi

