
SoX Plugins
A Reimplementation of the SoX Commandline

Processor as DAW Plugins

Author: Dr. Thomas Tensi
Date: 2022-10-01
Version: 0.95
Platforms: VST3 on Windows x64,

VST3 & AU on MacOSX (x86_64)
VST3 on Linux (x86_64)

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Available Effects . 4
1.3 Acknowledgements . 6

2 Installation of the SoX-Plugins Effects 7

3 Description of the Effects in SoX-Plugins 8
3.1 General Remarks . 8
3.2 SoX Allpass Filter . 9
3.3 SoX Band Filter . 10
3.4 SoX Bandpass Filter . 11
3.5 SoX Bandreject Filter . 12
3.6 SoX Bass Filter . 13
3.7 SoX Biquad Filter . 14
3.8 SoX Compand . 15
3.9 SoX Equalizer Filter . 18
3.10 SoX Gain . 19
3.11 SoX Highpass Filter . 20
3.12 SoX Lowpass Filter . 21
3.13 SoX MCompand . 22
3.14 SoX Overdrive . 24
3.15 SoX Phaser . 25
3.16 SoX Reverb . 27
3.17 SoX Treble Filter . 28
3.18 SoX Tremolo . 30

2

CONTENTS

3.19 Timelocking . 31

4 Regression Test 32

5 Notes on the Implementation 34
5.1 Overview . 34
5.2 Building the Plugins . 34
5.3 Internal Documentation . 35
5.4 Available Build Targets . 36
5.5 Debugging . 37

Bibliography 39

SoX Plugins for DAWs 3

Chapter 1

Introduction

1.1 Overview

The SoX-Plugins software package provides plugins for being used in digital
audio workstations (DAWs); they implement some of the more prominent
audio processing effects from SoX as DAW audio plugins.
SoX [SoXDOC] is a command line audio processing tool for Unix, Windows
and MacOSX that transforms source audio files in several formats into other
audio files. It provides several standard audio effects (like e.g. filters or
reverb) in good quality and with a transparent, open-source implementation.
The plugin implementation is completely free, open-source, platform-neutral
and based on the JUCE audio framework [JUCE]. Currently only plugin ver-
sions as VST3 under Windows 10, VST3 and AU under MacOSX (x86_64)
and VST3 under Linux (x86_64) are provided, but porting to other targets
should be straightforward, since building is supported by a platform-neutral
CMAKE build file (see chapter 5.2).
The effects provided here are a complete rewrite in C++ of the original SoX
algorithms nevertheless aiming at producing (bit-exact) identical renderings
in the DAW. This goal is achieved: when rendering some audio externally
via SoX and internally with the plugins, there is almost no difference. After
rendering and subtracting the results (see chapter 4) those cancel out with
typically a residual noise of less than -140dBFS due to rounding or precision
errors (SoX often uses 32bit integer processing, while SoX-Plugins always
uses double precision floating point processing).
The main motivation for this package is to be able to play around with effects
in a DAW and be sure that any external rendering by SoX will produce
exactly the same results. Although SoX does not always provide the "best"
effects, it still is a reliable and well-defined audio tool.
Only a selection of SoX effects has been reimplemented as plugins, but those

4

CHAPTER 1. INTRODUCTION

are the ones that are — in my opinion — the more prominent effects in that
suite.
Because SoX very often uses rich command line options for its effects, not
every effect configuration from SoX can be fully transported into the slider
oriented GUI of the SoX-Plugins. For example, the compander of SoX allows
the definition of a transfer function having multiple segments. Although the
internal engine of the SoX-Plugins compander implements exactly the same
internal segment logic of SoX, the user interface only allows the typical defi-
nition of a threshold and a compression ratio (leading to a transfer function
with three segments).
Note also that a spiffy user interface is not at all a priority for
this package. Also the parameter ranges are somewhat debat-
able, but they simply reflect the wide parameter ranges of the
SoX command-line effect.
The redesign and restructuring has also been done for easier maintenance,
because there is some redundancy and unnecessary complexity in the original
sources due to their several contributors. Nevertheless — as pointed out —
the effects provided here faithfully model the SoX command-line processing.
All the code is open-source; hence you can check and adapt it to your needs
(see chapter 5).

1.2 Available Effects

The following effects are supported:

allpass:
a biquad allpass filter two-poled with filter frequency and the filter
bandwith (in several units)

band:
a biquad band filter with center filter frequency and the filter bandwith
(in several units) and an option for unpitched audio

bandpass:
a biquad filter for bandpass with center filter frequency and the filter
bandwith (in several units)

bandreject:
a biquad filter for bandreject with center filter frequency and the filter
bandwith (in several units)

bass:
a biquad filter for boosting or cutting bass with a shelving characteris-

SoX Plugins for DAWs 5

1.2. AVAILABLE EFFECTS

tics with settings for filter frequency and the filter bandwith (in several
units)

biquad:
a generic biquad (iir) filter with 6 coefficients b0, b1, b2, a0, a1 and a2

compand:
a compander with attack, decay, input gain shift, threshold and com-
pression and soft knee; this is a reduced version of SoX compand with
only a simple transfer function and a combined attack/decay setting

equalizer:
a biquad filter for equalizing with settings for the pole count, the filter
frequency and the filter bandwith (in several units)

gain:
a volume changer by exact decibels. . .

highpass:
a biquad filter for highpass with settings for the pole count, the filter
frequency and the filter bandwith (in several units)

mcompand:
a multiband compander with a Linkwitz-Riley crossover filter and for
every band a compander with attack, decay, input gain shift, threshold
and compression and soft knee; again the companders only allow a
simple transfer function and a combined attack/decay setting

lowpass:
a biquad filter for lowpass with settings for the pole count, the filter
frequency and the filter bandwith (in several units)

overdrive:
a simple tanh distortion with gain and colour specification

phaser:
a phaser effect with sine or triangle modulation

reverb:
a reverb effect (based on Freeverb) with several parameters for the room
(like size and HF damping) as well as a possible predelay

treble:
a biquad filter for boosting or cutting treble with a shelving charac-
teristics with settings for filter frequency and the filter bandwith (in
several units)

tremolo:
a tremolo effect with sine modulation using a double-sideband sup-
pressed carrier modulation

6 Dr. Thomas Tensi

CHAPTER 1. INTRODUCTION

1.3 Acknowledgements

This project is a derivative work based on the foundations laid by the SoX
community. Although the algorithms used were modified and redesigned,
this project would been much more complicated and tedious without this
basis.
Hence my thanks go to Chris Bagwell, Nick Bailey, Daniel Pouzzner, Måns
Rullgård, Rob Sewell and all the other contributors of the SoX project: with-
out your effort this would not have been possible!

SoX Plugins for DAWs 7

Chapter 2

Installation of the SoX-Plugins
Effects

The installation is as follows:

1. Copy the plugins from the appropriate subdirectory for your platform
of _DISTRIBUTION/targetPlatforms directory in [SoXVST] into the di-
rectory for VST or AU plugins of your DAW.

2. The distribution also contains this documentation pdf file in subdirec-
tory doc and test files in subdirectory test (see section 4).

3. When installing the MacOSX plugins, note that those are not signed;
so you have to explicitly remove the quarantine flag from them (e.g. by
applying the command sudo xattr -rd com.apple.quarantine «vstPath»).

4. Restart your DAW and rescan the plugins. You should now be able to
select all the SoX-Plugins(they are all prefixed by "SoX").

8

Chapter 3

Description of the Effects in
SoX-Plugins

3.1 General Remarks

As mentioned in the introduction this package provides several audio tools
written in C++ for emulating SoX bit-exactly.
This goal is reached up to a certain precision (of about -140dBFS), because
SoX often uses 32bit integer processing while SoX-Plugins uses double pre-
cision float processing.
Where noted in the following description, some simplifications have been
done to take care of the limited user interface and also some parameters were
omitted.
Note again that the focus of this toolset is the faithful reimplementation and
somehow a redesign of SoX; a spiffy user interface is not at all a priority in
this project.
For the same reasons none of the effects of SoX-Plugins displays anything;
they just process audio parametrized by their slider settings.
All effects of SoX-Plugins are discussed in alphabetical order in the following
chapter. Note that the effects description is mostly taken from the SoX
documentation [SoXDOC] except for specifics of the SoX-Plugins effects.

9

3.2. SOX ALLPASS FILTER

3.2 SoX Allpass Filter

Figure 3.1: Panel for SoX Plugin Allpass

Parameter Description Unit
Filter Kind the kind of the filter (here:

Allpass)
Allpass / Band / Bass /
BandPass / BandReject /
Biquad / Equalizer / High-
Pass / LowPass / Treble

Frequency the center frequency of the fil-
ter

Hz

Bandwidth the bandwidth modulus of the
filter

—

Bandwidth Unit the bandwidth unit of the fil-
ter

Frequency / Octaves /
Quality / Butterworth

This effect is a variant of the plugin SoxFilter and implements a two-pole
all-pass filter with Frequency as center frequency and filter-width Bandwidth
with unit Bandwidth Unit. The bandwidth kinds are a relative Frequency,
a specification of octaves, the filter quality or the butterworth quality (with
fixed quality q =

√
2/2).

An all-pass filter changes the audio’s frequency-to-phase relationship without
changing its frequency-to-amplitude relationship. The detailed filter descrip-
tion can be found in [RBJFILT].

10 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE EFFECTS IN SOX-PLUGINS

3.3 SoX Band Filter

Figure 3.2: Panel for SoX Plugin Band

Parameter Description Unit
Filter Kind the kind of the filter (here:

Band)
Allpass / Band / Bass /
BandPass / BandReject /
Biquad / Equalizer / High-
Pass / LowPass / Treble

Unpitched
Mode?

flag to tell whether special
processing for unpitched au-
dio is applied

Boolean

Frequency the center frequency of the fil-
ter

Hz

Bandwidth the bandwidth modulus of the
filter

—

Bandwidth Unit the bandwidth unit of the fil-
ter

Frequency / Octaves /
Quality / Butterworth

This effect is a variant of the plugin SoxFilter and implements a band-pass
filter. The frequency response drops logarithmically around Frequency, the
Bandwidth and Bandwidth Unit parameters gives the slope of the drop; fre-
quencies at frequency+width and frequency-width will be half of their original
amplitudes. The effect defaults to a mode that is oriented to pitched audio,
i.e. voice, singing, or instrumental music.
When the option Unpitched Mode? is set, an alternate mode for un-pitched
audio (e.g. percussion) is applied. Note that this option introduces a power-
gain of about 11dB in the filter, so beware of output clipping; the option
introduces noise in the shape of the filter, i.e. peaking at the center frequency
and settling around it.

SoX Plugins for DAWs 11

3.4. SOX BANDPASS FILTER

3.4 SoX Bandpass Filter

Figure 3.3: Panel for SoX Plugin Bandpass

Parameter Description Unit
Filter Kind the kind of the filter (here:

BandPass)
Allpass / Band / Bass /
BandPass / BandReject /
Biquad / Equalizer / High-
Pass / LowPass / Treble

Cst. Skirt
Gain?

flag to tell whether a constant
skirt gain is applied

Boolean

Frequency the center frequency of the fil-
ter

Hz

Bandwidth the bandwidth modulus of the
filter

—

Bandwidth Unit the bandwidth unit of the fil-
ter

Frequency / Octaves /
Quality / Butterworth /
Slope

This effect is a variant of the plugin SoxFilter; by selecting the appropriate
Filter Kind, this effect is a two-pole Butterworth band-pass filter with Fre-
quency as central frequency, and (3dB-point) band-width given by Bandwidth
and Bandwidth Unit. The Cst. Skirt Gain? option selects a constant skirt gain
(peak gain = Q) instead of the default, which is a constant 0dB peak gain.
The filters roll off at 6dB per octave (20dB per decade).
The detailed filter description can be found in [RBJFILT].

12 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE EFFECTS IN SOX-PLUGINS

3.5 SoX Bandreject Filter

Figure 3.4: Panel for SoX Plugin Bandreject

Parameter Description Unit
Filter Kind the kind of the filter (here:

BandReject)
Allpass / Band / Bass /
BandPass / BandReject /
Biquad / Equalizer / High-
Pass / LowPass / Treble

Frequency the center frequency of the fil-
ter

Hz

Bandwidth the bandwidth modulus of the
filter

—

Bandwidth Unit the bandwidth unit of the fil-
ter

Frequency / Octaves /
Quality / Butterworth /
Slope

This effect is a variant of the plugin SoxFilter; by selecting the appropriate
Filter Kind, this effect is a two-pole Butterworth band-reject filter with Fre-
quency as central frequency, and (3dB-point) band-width given by Bandwidth
and Bandwidth Unit.
The detailed filter description can be found in [RBJFILT].

SoX Plugins for DAWs 13

3.6. SOX BASS FILTER

3.6 SoX Bass Filter

Figure 3.5: Panel for SoX Plugin Bass

Parameter Description Unit
Filter Kind the kind of the filter (here:

Bass)
Allpass / Band / Bass /
BandPass / BandReject /
Biquad / Equalizer / High-
Pass / LowPass / Treble

Gain gain of filter at 0Hz dB
Frequency the center frequency of the fil-

ter
Hz

Bandwidth the bandwidth modulus of the
filter

—

Bandwidth Unit the bandwidth unit of the fil-
ter

Frequency / Octaves /
Quality / Butterworth

This effect is a variant of the plugin SoxFilter; by selecting the appropriate
Filter Kind, this effect boosts or cuts the bass (lower) frequencies of the audio
using a two-pole shelving filter with a response similar to that of a standard
hi-fi’s tone-controls. This is also known as shelving equalisation (EQ).
The parameters are as follows:

• Gain gives the gain at 0Hz. Its useful range is about -20 (for a large cut)
to +20 (for a large boost). Beware of clipping when using a positive
gain.

• Frequency sets the filter’s central frequency and can be used to extend
or reduce the frequency range to be boosted or cut.

• The band-width given by parameters Bandwidth and Bandwidth Unit
determines how steep is the filter’s shelf transition. In addition to the
common width specification methods described above, “slope” may be
used. The useful range of slope is about 0.3, for a gentle slope, to 1
(the maximum), for a steep slope.

The detailed filter description can be found in [RBJFILT].

14 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE EFFECTS IN SOX-PLUGINS

3.7 SoX Biquad Filter

Figure 3.6: Panel for SoX Plugin Biquad

Parameter Description Unit
Filter Kind the kind of the filter (here:

Biquad)
Allpass / Band / Bass /
BandPass / BandReject /
Biquad / Equalizer / High-
Pass / LowPass / Treble

b0 coefficient for xn —
b1 coefficient for xn−1 —
b2 coefficient for xn−2 —
a0 coefficient for yn —
a1 coefficient for yn−1 —
a2 coefficient for yn−2 —

This effect is a variant of the plugin SoxFilter and implements a biquad IIR
filter with the given coefficients (see [DBIQFILT]). It implements the (direct
form) function

yn =
2∑

i=0
bixn−i −

2∑
i=1

aiyn−i

and is the basis for the other biquad filters (like e.g. the “SoX Equalizer”).

SoX Plugins for DAWs 15

3.8. SOX COMPAND

3.8 SoX Compand

Figure 3.7: Panel for SoX Plugin Compand

Parameter Description Unit
Band Count the count of the bands (here:

1)
—

Band Index the index of the band to be
adapted (here: 1)

—

Attack the attack time of the com-
pander

s

Decay the decay time of the compan-
der

s

Knee the rounding of the corners in
the transfer function

dB

Threshold the threshold of the compan-
der

dBFS

Ratio the compression factor of the
compander

—

Gain the compander gain before
processing

dB

Top Frequency the compander band top fre-
quency (for all but the last ac-
tive band)

Hz

This effect implements a compander to compress or expand the dynamic
range of the audio. A compander and multiband compander are both vari-
ants of the plugin SoXCompander where a simple compander is a multiband
compander with just one page.

16 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE EFFECTS IN SOX-PLUGINS

Figure 3.8: Example Transfer Function (Threshold 20dBFS, Ratio 4:1)

Band Count tells the number of bands in a multiband compander, for a single
band compander this must be set to 1. Band Index selects the band whose
parameters shall be modified, for a single band compander this also must be
set to 1, because there is only one active band.
The parameters Attack and Decay (in seconds) determine the time over which
the instantaneous level of the input signal is averaged to determine its volume;
attacks refer to increases in volume and decays refer to decreases. For most
situations, the attack time (response to the music getting louder) should
be shorter than the decay time because the human ear is more sensitive to
sudden loud music than sudden soft music. Typical values are 0.3s for attack
and 0.8s for decay.
The transfer function of the compander is given by parameters Threshold,
Ratio and Knee. The compander leaves the original level unchanged, when
it is below threshold and compresses it by ratio beyond this threshold. So
e.g. for a threshold of 20dBFS, a knee of 0dB and a ratio of 4:1 the transfer
function is a graph shown in figure 3.8. Note that for technical reasons SoX
uses a linear lead-in segment with size 10dB below threshold value.
If the parameter Knee is greater than 0, the corner points of the transfer
function will be rounded by that amount.
The parameter Gain is an additional gain in dB to be applied at all points
on the transfer function and allows easy adjustment of the overall gain.

SoX Plugins for DAWs 17

3.8. SOX COMPAND

As mentioned before the compander is a multiband compander with one
band; hence the setting for the Top Frequency is not used.

Restriction: Only one overall pair of attack/decay parameters may be
specified (where SoX allows one pair per channel). This
is in principle supported by the effects engine of SoX-
Plugins, but not supported in the current user interface.

Restriction: The original SoX allows an arbitrary multi-segmented
transfer function. This is in principle supported by the
effects engine of SoX-Plugins, but not supported in the
current user interface.

Restriction: There is no delay parameter for delayed compansion.

18 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE EFFECTS IN SOX-PLUGINS

3.9 SoX Equalizer Filter

Figure 3.9: Panel for SoX Plugin Equalizer

Parameter Description Unit
Filter Kind the kind of the filter (here:

Equalizer)
Allpass / Band / Bass /
BandPass / BandReject /
Biquad / Equalizer / High-
Pass / LowPass / Treble

Frequency the 3dB point frequency of the
filter

Hz

Bandwidth the bandwidth modulus of the
filter

—

Bandwidth Unit the bandwidth unit of the fil-
ter

Frequency / Octaves /
Quality / Butterworth

Eq. Gain gain of filter at frequency dB

This effect is a variant of the plugin SoxFilter and implements a two-pole
peaking equalisation (EQ) filter. With this filter, the signal-level at and
around a selected frequency can be increased or decreased, whilst (unlike
band-pass and band-reject filters) that at all other frequencies is unchanged.
The parameter Frequency gives the filter’s central frequency in Hz, param-
eters Bandwidth and Bandwidth Unit the bandwidth and Gain the required
amplification or attenuation in decibels. Beware of clipping when using a
positive gain.
The filter is described in detail in [RBJFILT].

SoX Plugins for DAWs 19

3.10. SOX GAIN

3.10 SoX Gain

Figure 3.10: Panel for SoX Plugin Gain

Parameter Description Unit
Gain the amplification or attenua-

tion factor
dB

This effect is an amplifier or attenuator for the audio signal with a single Gain
parameter in decibels. The gain factor applies to all channels identically.
Nothing special, but note that the calculation is exact, hence a gain of -6dB
does not halve the signal (but a gain of -6.0206dB does quite well).

20 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE EFFECTS IN SOX-PLUGINS

3.11 SoX Highpass Filter

Figure 3.11: Panel for SoX Plugin Highpass

Parameter Description Unit
Filter Kind the kind of the filter (here:

Highpass)
Allpass / Band / Bass /
BandPass / BandReject /
Biquad / Equalizer / High-
Pass / LowPass / Treble

Number of
Poles

selects between single and
double pole filter

single/double

Frequency the 3dB point frequency of the
filter

Hz

Bandwidth the bandwidth modulus of the
filter

—

Bandwidth Unit the bandwidth unit of the fil-
ter

Frequency / Octaves /
Quality / Butterworth

This effect is a variant of the plugin SoxFilter and implements a high-pass
filter with a 3dB point Frequency. Depending on Number of Poles the filter
can be either single-pole or double-pole. The parameters Bandwidth and
Bandwidth Unit apply only to double-pole filters; a Butterworth response is
given by butterworth selection or by a q of 0.707. The filters roll off at 6dB
per pole per octave (20dB per pole per decade).
The double-pole filters are described in detail in [RBJFILT].

SoX Plugins for DAWs 21

3.12. SOX LOWPASS FILTER

3.12 SoX Lowpass Filter

Figure 3.12: Panel for SoX Plugin Lowpass

Parameter Description Unit
Filter Kind the kind of the filter (here:

Lowpass)
Allpass / Band / Bass /
BandPass / BandReject /
Biquad / Equalizer / High-
Pass / LowPass / Treble

Number of
Poles

selects between single and
double pole filter

single/double

Frequency the 3dB point frequency of the
filter

Hz

Bandwidth the bandwidth modulus of the
filter

—

Bandwidth Unit the bandwidth unit of the fil-
ter

Frequency / Octaves /
Quality / Butterworth

This effect is a variant of the plugin SoxFilter and implements a low-pass filter
with a 3dB point Frequency. Depending on Number of Poles the filter can be
either single-pole or double-pole. The parameters Bandwidth and Bandwidth
Unit apply only to double-pole filters; a Butterworth response is given by
butterworth selection or by a q of 0.707. The filters roll off at 6dB per pole
per octave (20dB per pole per decade).
The double-pole filters are described in detail in [RBJFILT].

22 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE EFFECTS IN SOX-PLUGINS

3.13 SoX MCompand

Figure 3.13: Panel for SoX Plugin MCompand

Parameter Description Unit
Band Count the count of the bands —
Band Index the index of the band to be

adapted
—

for every band
Attack the attack time of the com-

pander band
s

Decay the decay time of the compan-
der band

s

Knee the rounding of the corners in
the transfer function

dB

Threshold the threshold of the compan-
der band

dBFS

Ratio the compression factor of the
compander band

—

Gain the compander band gain be-
fore processing

dB

Top Frequency the compander band top fre-
quency (for all but the last ac-
tive band)

Hz

Compander and multiband compander are both variants of the plugin SoX-
Compander where a simple compander is a multiband compander with just
one page. For a general multi-band compander the audio is first divided into

SoX Plugins for DAWs 23

3.13. SOX MCOMPAND

bands using Linkwitz-Riley cross-over filters and later separately specifiable
compander run on every band (see the compand effect in 3.8 for the definition
of its parameters).
Band Count gives the number of bands in a multiband compander which
can be set to the desired number, where the maximum is 10. Band Index
selects the band whose parameters shall be modified; note that it is possible
to modify any band, but the inactive bands are signified by a special
reddish background (see figure 3.13).

Restriction: Only one overall pair of attack/decay parameters may
be specified per band (where SoX allows one pair per
channel). This is in principle supported by the effects
engine of SoX-Plugins, but not supported in the current
user interface.

Restriction: The original SoX allows an arbitrary multi-segmented
transfer function. This is in principle supported by the
effects engine of SoX-Plugins, but not supported in the
current user interface.

Restriction: There is no delay parameter for delayed compansion.

24 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE EFFECTS IN SOX-PLUGINS

3.14 SoX Overdrive

Figure 3.14: Panel for SoX Plugin Overdrive

Parameter Description Unit
Gain the overdrive gain before pro-

cessing
dB

Colour percentage for the amount of
even harmonic content in out-
put

—

This effect implements an tanh overdrive. Gain gives the input gain in deci-
bels, The parameter Colour controls the amount of even harmonic content in
the over-driven output.

SoX Plugins for DAWs 25

3.15. SOX PHASER

3.15 SoX Phaser

Figure 3.15: Panel for SoX Plugin Phaser

Parameter Description Unit
Effect Kind the kind of the modulation

(here: Phaser)
Phaser / Tremolo

In Gain the gain before processing dB
Out Gain the gain applied after process-

ing
dB

Delay the predelay of the effect ms
Decay the decay factor of the phaser —
Frequency the phaser modulation fre-

quency
Hz

Waveform the modulation waveform Sine / Triangle
Time Offset the point in project time

where modulation is at phase
0◦ (see 3.19)

s

This effect is a variant of the plugin SoxPhaserAndTremolo and implements a
phaser effect to the audio.
In Gain is the amplification factor for the input in decibels. Delay gives
the delay in milliseconds, Decay a factor for the decay within the phaser
and Frequency gives the modulation frequency in Hz. The Waveform of the
modulation is either sinusoidal —– preferable for multiple instruments — or
triangular —– gives single instruments a sharper phasing effect —. Out Gain
is the volume of the output.
The decay should be less than 0.5 to avoid feedback, and usually no less than
0.1.

26 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE EFFECTS IN SOX-PLUGINS

Time Offset shows that this effect is time-locked. For details refer to sec-
tion 3.19.

SoX Plugins for DAWs 27

3.16. SOX REVERB

3.16 SoX Reverb

Figure 3.16: Panel for SoX Plugin Reverb

Parameter Description Unit
Is Wet Only? tells whether only the wet sig-

nal should by produced
Boolean

Reverberance percentage for reverb density —
HF Damping percentage amount of damp-

ing of high frequencies for ev-
ery reflection relative to low
frequencies

—

Room Scale percentage for size of the room
(more precisely the reflectiv-
ity of the room)

—

Stereo Depth percentage amount of stereo
effect

—

Predelay time offset until first reverb
occurs

ms

Wet Gain gain of wet signal relative to
dry signal

dB

This effect implements reverberation of audio using the “freeverb” algorithm,
which uses eight parallel Schröder-Moorer filtered-feedback comb-filters fol-
lowed by four Schröder allpasses in series.
Details on this algorithm can be found in [FREEVERB].

28 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE EFFECTS IN SOX-PLUGINS

3.17 SoX Treble Filter

Figure 3.17: Panel for SoX Plugin Treble

Parameter Description Unit
Filter Kind the kind of the filter (here:

Treble)
Allpass / Band / Bass /
BandPass / BandReject /
Biquad / Equalizer / High-
Pass / LowPass / Treble

Gain gain of filter at 22kHz dB
Frequency the center frequency of the fil-

ter
Hz

Bandwidth the bandwidth modulus of the
filter

—

Bandwidth Unit the bandwidth unit of the fil-
ter

Frequency / Octaves /
Quality / Butterworth

This effect is a variant of the plugin SoxFilter; by selecting the appropriate
Filter Kind, this effect boosts or cuts the treble (upper) frequencies of the
audio using a two-pole shelving filter with a response similar to that of a
standard hi-fi’s tone-controls. This is also known as shelving equalisation
(EQ).
The parameters are as follows:

• Gain gives the gain at a frequency whichever is the lower of 22kHz and
the Nyquist frequency (for treble). Its useful range is about -20 (for a
large cut) to +20 (for a large boost). Beware of clipping when using a
positive gain.

• Frequency sets the filter’s central frequency and can be used to extend
or reduce the frequency range to be boosted or cut.

• The band-width given by parameters Bandwidth and Bandwidth Unit
determines how steep is the filter’s shelf transition. In addition to the
common width specification methods described above, “slope” may be
used. The useful range of slope is about 0.3, for a gentle slope, to 1
(the maximum), for a steep slope.

SoX Plugins for DAWs 29

3.17. SOX TREBLE FILTER

The detailed filter description can be found in [RBJFILT].

30 Dr. Thomas Tensi

CHAPTER 3. DESCRIPTION OF THE EFFECTS IN SOX-PLUGINS

3.18 SoX Tremolo

Figure 3.18: Panel for SoX Plugin Tremolo

Parameter Description Unit
Effect Kind the kind of the modulation

(here: Tremolo)
Phaser / Tremolo

Frequency the modulation frequency of
the tremolo

Hz

Depth percentage value for the inten-
sity of modulation

—

Time Offset the point in project time
where modulation is at phase
0◦ (see 3.19)

s

This effect is a variant of the plugin SoxPhaserAndTremolo and implements
a tremolo effect. This tremolo is done by signal multiplication; hence it is
a low frequency double sideband suppressed carrier modulation. Parameter
Frequency gives the tremolo frequency, Depth gives the intensity as a percent-
age.
Time Offset shows that this effect is time-locked. For details refer to sec-
tion 3.19.

SoX Plugins for DAWs 31

3.19. TIMELOCKING

3.19 Timelocking

There are effects that behave differently in time, technically they are time-
variant. A filter does not care when a signal arrives, but a modulated effect
like e.g. a phaser produces a different sound for different start times because
the modulation is normally in another phase.
Hence when looking at the behaviour at a specific point in time, those time-
variant effects would behave differently when the effect start time is varied.
For example, assume a phaser with a 0.25Hz modulation (one cycle every
4s): when you start the effect 1s later, its modulation is now off by 90◦. This
is not helpful when the effect now depends on start time or loop positioning.
To circumvent this problem, all time variant effects from above (phaser and
tremolo) are time-locked i.e. they check the current play position and always
behave the same at some specific point in time regardless of the playback
start time.
Additionally those effects have a parameter called Time Offset. This param-
eter tells at what time the effect has a phase of zero in its modulation. The
default is 0s, but it may be adapted accordingly.
Take the phaser above and assume you want to make sure that its modulation
is exactly at 0◦ at position 155s within your song1. Then you just set Time
Offset to “155”. Because the period of the modulation is 4s it is also okay to
use 155 + 4k, k ∈ Z as offset (e.g. “3”), but the above saves you from some
calculation for complicated modulation frequencies.
By this method even time-variant effects can be synced with externally gen-
erated audio material.

1This is a little lie, because the initial phaser modulation phase is 90◦, but the argument
is still valid.

32 Dr. Thomas Tensi

Chapter 4

Regression Test

To test that the effects of SoX-Plugins really are bit-identical to SoX, a little
test suite has been set up for checking DAW versus the command-line.
The suite assumes that command-line SoX is installed in the search path of
your operating system.
If so, a simple batch script sets up raw audio test files and — externally via
the command line — applies SoX effects to them producing audio result files.
The parameters used are a bit exotic to ensure that algorithmic differences
between SoX and SoX-Plugins will show up. The batch script can be found
in the test subdirectory and is called makeTestFiles.bat (for Windows) or
makeTestFiles.sh (for MacOS and Linux).
Since there are so many DAWs available, it is hard to provide a test project
for each of those. The distribution just contains a Reaper project referencing
those audio test files and result files in autonomous tracks (see figure 4.1).
Adaption to other DAWs should be straightforward.
The SoX-Plugins effects are configured with the exactly the same parameters
as given in the batch file and are correspondingly applied to the raw audio
test files.
When subtracting the rendered audio in Reaper and the externally rendered
audio from SoX, they (almost) cancel out. This can be checked by a spectrum
analyser in the master channel, which is shown in figure 4.2. It shows a noise
floor of typically less than -120dB.
Surprisingly the tracks do not completely cancel out, but this comes from
rounding or precision errors — SoX often uses 32bit integer processing, while
the SoX-Plugins always use double precision floating point processing —
and also the 24 bit sample depth used in the FLAC files of the test suite;
increasing that sample depth would even lead to less residual noise.

33

Figure 4.1: Regression Test Setup in Reaper

Figure 4.2: Example Noise Floor for Regression Test in Reaper

34 Dr. Thomas Tensi

Chapter 5

Notes on the Implementation

5.1 Overview

The implementation of the SoX-Plugins is done in C++ and relies on the
JUCE library [JUCE]. The algorithms of SoX have not been copied, but
significantly refined and reordered in an object-oriented manner. Also redun-
dancies in the different modules have (as far as possible) been eliminated,
and the processing adapted to double precision floating point numerics where
command-line SoX only uses 32bit integer processing.
Those changes have been done with the goal in mind to produce bit-exact
reproductions of the original algorithms. As shown in section 4 this goal has
been achieved.
The complete source code of SoX-Plugins is open-source for easy review and
adaptation. Currently there is only a tool chain for VST3 plugins under Win-
dows 10, VST3 and AU plugins under MacOSX and VST3 under Linux, but
in principle the code is easily portable to other plugin formats or platforms.

5.2 Building the Plugins

Preliminaries In the GIT-project of SoX-Plugins (at [SoXVST]) there is
a build file for CMAKE to build the plugins for different platforms.
Minimum prerequisites for building are:

• a clone of the GIT-project at https://github.com/prof-spock/SoX-Plugins,

• an installation of the audio framework JUCE [JUCE] with version 5 or
later,

• some C++ compiler suite for your platform (e.g. Visual Studio, XCode,
clang or gcc), and

35

5.3. INTERNAL DOCUMENTATION

• an installation of the build automation platform CMAKE [CMAKE]
with version 3.10 or later

For documentation generation you can optionally install:

• a LATEX installation — like e.g. MikTeX for Windows or texlive-latex-
extra in Linux/MacOS — (for the manual), and

• doxygen [DOXYGEN] and graphviz [GRAPHVIZ] for the internal pro-
gram documentation

Doing the Build The full build process is started via CMAKE. It is rec-
ommended to do a so-called out-of-source-build for the SoX-Plugins, that
means, you define some build directory where all build activity is done.
The steps are as follows:

1. Define some build directory (lets say BUILD) and change to it.

2. Find the path of the CMakeList.txt configuration file. Adapt the file
LocalConfiguration.cmake accordingly to reflect the location of LATEXas
well as the JUCE and the doxygen installation.

3. Configure the build process via

cmake -S <pathTo >/ CMakeList .txt -B . --config Release

4. Build all the plugins via

cmake --build . --config Release

5. Install the plugins into a architecture-specific subfolder in the _DISTRI-
BUTION/targetPlatforms directory and install also the documentation
into the _DISTRIBUTION directory via

cmake --build . --config Release --target install

5.3 Internal Documentation

In the github repository there is an extensive doxygen documentation avail-
able for the inner workings of the plugins at

https://github.com/prof-spock/SoX-
Plugins/tree/master/internalDocumentation/html

with entry point

36 Dr. Thomas Tensi

CHAPTER 5. NOTES ON THE IMPLEMENTATION

Figure 5.1: Example Namespace Page for Plugins from doxygen

https://github.com/prof-spock/SoX-
Plugins/tree/master/internalDocumentation/html/index.html.

Every public and private feature of all classes and data types is documented
and can be analyzed in an HTML browser. Figure 5.1 gives an impression
how such an HTML page looks like for the namespaces in SoX-Plugins.
If you want to regenerate this documentation from the code, you need an
installation of doxygen [DOXYGEN] on your computer. If you have that
available, the generation can be done via the CMAKE chain as target doxy-
genDocumentation in the build directory:

cmake --build . --config Release \
--target internalDocumentation

If the command completes, the documentation in the internalDocumentation
subdirectory of the project is updated.
To trigger regeneration, it suffices to delete the file internalDocumentation/htm-
l/index.html.

5.4 Available Build Targets

Figure 5.2 shows the available CMAKE targets. They can be used as

cmake --build . --config Release --target XXX

where XXX is the target name.

SoX Plugins for DAWs 37

5.5. DEBUGGING

Target Name Description
documentation the complete project documentation

L99 internalDocumentation the HTML doxygen documentation for the
code

L99 pdfDocumentation the PDF manual for the plugins
SoXPlugins the static libraries plus platform plugins

for all effects
L99 SoXPlugins_Effect the static effect libraries for all the effects
L99 SoXPlugins_VST the VST3 libraries for all the effects
L99 SoXPlugins_AU the AU libraries for all the effects (only on

MacOSX)
SupportLibraries the static libraries supporting the effects

L99 JuceFramework the static library with utility classes from
the JUCE framework

L99 SoXCommon the static library with utility classes (like
e.g. lists or logging)

L99 SoXViewAndController the static library with plugin UI and plu-
gin wrapper (like e.g. SoXAudioEditor or
SoXAudioProcessor)

foreach effectName in {Compander, Filter, Gain, Overdrive,
PhaserAndTremolo, Reverb} do
SoX<effectName> the static libraries plus platform plugins

for given effect
L99 SoX<effectName>_Effect the static library for the given effect
L99 SoX<effectName>_VST the VST3 library for the given effect
L99 SoX<effectName>_AU the AU library for the given effect (only

for MacOSX)
od

Figure 5.2: Available Build Targets for CMAKE

5.5 Debugging

For debugging purposes, every plugin can also exist as a debugging version
that does an extensive entry-exit-logging into the temp directory. Note that
this debugging slows down processing extremely, but it helps to understand
problems in case of errors. Figure 5.3 shows how a logging file looks like.
Every non-trivial function is logged there at least twice with timestamps:
“»” indicates the entry of that function (possibly with informationon the
argument values), “«” the exit of that function (possibly with the return
value) and “–” indicates some intermediate information during the function
processing. The logging data is hierarchical, hence you can see the function
call structure in this file precisely.
All logging files go to the directory specified by the temp environment vari-

38 Dr. Thomas Tensi

CHAPTER 5. NOTES ON THE IMPLEMENTATION

Figure 5.3: Example for Logging File

able.

SoX Plugins for DAWs 39

Bibliography

[CMAKE] Kitware, Inc.
CMAKE Build Automation System.
http://cmake.org

[DBIQFILT] Wikipedia.
Digital Biquad Filter.
http://en.wikipedia.org/wiki/Digital_biquad_filter

[DOXYGEN] Dimitri van Heesch.
Doxygen - Generate Documentation from Source Code.
https://www.doxygen.nl

[FREEVERB] J. O. Smith.
Physical Audio Signal Processing.
W3K Publishing, 2010, ISBN 978-0-9745607-2-4.
https://ccrma.stanford.edu/~jos/pasp/Freeverb.html

[GRAPHVIZ] AT&T Labs.
Graphviz - Graph Visualization Software.
https://graphviz.org

[JUCE] Raw Material Software Limited.
JUCE Audio Framework.
https://www.juce.com

[REAPER] Cockos Incorporated.
Reaper Digital Audio Workstation.
https://www.reaper.fm

[RBJFILT] R. Bristow-Johnson.
Cookbook formulae for audio EQ biquad filter coefficients.
https://www.w3.org/2011/audio/audio-eq-cookbook.html

[SoXDOC] Chris Bagwell, Lance Norskog, Måns Rullgård et al.
SoX - SOund eXchange - Documentation.
http://sox.sourceforge.net/Docs/Documentation

40

BIBLIOGRAPHY

[SoXVST] Dr. Thomas Tensi.
SoX VST Plugins.
https://github.com/prof-spock/SoX-Plugins

SoX Plugins for DAWs 41

