Technical Documentation for the Revised ASxxxx
Linker

Dr. Thomas Tensi

2009-10-08

1 Introduction

1.1 Overview

This program is a completely renovated version of the linker from the 8-bit-
assembler suite ASxxxx from Alan Baldwin. Parts of this documentation are
based on his suite documentation [Baldwin09].

The main idea was to modularize the program towards a plugin-architecture.
All target platforms supported provide several routines which are called by the
linking framework. Platform specific code should only go into those modules;
platform-independent code should go into the general framework.

Apart from some syntactical improvements and data structure enhancements
the main contribution of this linker is the support for bankswitching at link time.
The SDCC compiler has provided bankswitching support for several platforms
at compile time, but this proves to be too unflexible in practice. Take a library
module for example: it may go to several banks depending on the bank layout
of the calling program.

The renovated linker uses a configuration file which tells the bank number for
each module. The linker puts the modules in the appropriate banks and also
takes care that interbank calls are correctly handled.

2 Usage
The linker is a command line program with the following syntax and options:
aslink [-i] [-s] [-m] [-u] [-x] [-d] [-q] [-b area = value]

[-g symbol = value] [-k path] [-1 file]
file ...

Revised Linker Documentation 2.1 Platform Independent Options

2.1 Platform Independent Options

The following options are supported:

file ...

General Options:

-b area = expression

-g symbol = expression

Library File Options:

-k path

-1 file

list of files to be linked

specifies an area base address via an expression which
may contain constants and/or defined symbols from
the linked files (not yet supported)

specifies value for the symbol via an expression which
may contain constants and/or defined symbols from
the linked files

specifies a library directory prefix path; this will later
be combined with a relative library path to find com-
plete library path names

specifies the relative or complete path of a library
file; when a relative path is given, the absolute path
is found by combination with some library directory
prefix path

Note that more than one path and also multiple library files are allowed.

Output Format Options:

-S

linker output is in Intel hex format (to file.ihx)
linker output is in Motorola S19 format (to
file.s19)

Note that output format options are cumulative; it is possible to have the output

in more than one format.

Map and List File Options:

Dr. Thomas Tensi

2009-10-08 2

Revised Linker Documentation 2.2 Specific Options for Z80/GBZ80 Platform

-m generate a map file into file.map containing a list of
symbols (grouped by area) with relocated addresses,
sizes of linked areas, and other linking data

-u update all available listing files file.lst into
file.rst by replacing relocatable bytes by their cor-
rect absolute values

-X use a hexadecimal number radix for the map file

-d use a decimal number radix for the map file

-q use an octal number radix for the map file

2.2 Specific Options for Z80/GBZ80 Platform

-j generate a map file into file.sym in a form suitable
for the debugger within the NO$GMB Gameboy em-
ulator

-yo number set count of ROM banks to number (default is 2)

-ya number set count of RAM banks to number (default is 0)

-yt number set cartridge MBC type to number (default is no
MBC)

-yn name set name of program to name (default is the name of
output file truncated to eight characters)

-yp addr = byte set byte in the output executable file at address addr
to byte

-7 produce a Gameboy image as file (with extension
.gb)

3 Processing

The linker gathers all command line files and processes them in the order pre-
sented in two passes.

In the first pass all modules, areas and symbols definitions and references are
collected. For each referenced but undefined symbol all library files are searched
and — when they contain such a symbol — are added to the object file list.
This process continues until no more references can be satisfied. The library
files are found by doing a combination of prefix paths and relative paths of the
library files.

Finally area and symbol address definitions from the commandline are added
to the internal symbol table.

When banking is used another step has to happen in pass 1: the banking module
of the linker checks for interbank calls. Those interbank calls go from code in
one bank to code in another parallel bank. Those calls cannot happen directly,

Dr. Thomas Tensi 2009-10-08 3

Revised Linker Documentation

because during the call the banks have to be switched and also the bank switch
upon return from the callee has to be organized. For those interbank calls the
linker introduces trampoline code which does the above steps. Because banking
also needs library modules another search of the libraries has to be done.

Note that at the end of the first pass it is clear what object files and libraries
are needed for the executable and which symbols are available. It is not yet
clear where the areas and symbols are located.

In the second pass all areas are located in the address space. This location is
done based on the area type which is one of ABS, CON, REL, OVR or PAG as
follows:

e Absolute areas (ABS) have a specific address either assembled in or given
by the -b option on the linker command line. They are always put to the
address given and are not relocated.

e Relative areas (REL) have a base address of 0x0000 assembled in. The
real start address is either given by a -b option on the linker command
line or is defined for the platform.

All subsequent relative areas are concatenated to proceeding relative areas
in an order defined by the first linker input file.

When all areas have been located, their addresses and those of the contained
symbols have been completely defined.

Several checks are done for sanity of the output executable: The linker e.g.
checks whether paged areas (type PAG) are on a 256 byte boundary and have
a length less than or equal to 256 bytes. Also referenced but undefined symbols
or inconsistent constants’ definitions are reported.

As the main result of linking the output executable is now generated. The
executable format is either one of the standard formats HEX or S-records or
even a platform-specific format (like the Gameboy load format). The linker can
even produce several output formats in parallel.

In addition to the output executables, two more kinds of output can be pro-
duced:

e A linking map file provides detailed information about symbol addresses,
areas, modules, libraries and errors during linking.

o The updated listing files are generated from original assembler listings
(.Ist-files). For each of those files a companion file is produced which has
all addresses and data relocated to their final values.

Dr. Thomas Tensi 2009-10-08 4

Revised Linker Documentation

4 Banking Caveats

As mentioned before the linker takes care of transforming interbank-calls appro-
priately. Nevertheless there are some topics which cannot be correctly handled
when an architecture does not use extended addresses for pointers. This, for
example, applies to the GBZ80, which only has 16-bit pointers:

e an indirect call via a function pointer to a function in another bank, and

e pointer parameters pointing to another bank.

Note that the latter problem can be hard to track down: Take as an example a
constant string (which is normally located in the bank of its compilation unit)
and have its pointer passed to some routine as a parameter. When that routine
is located in another bank or passes that parameter directly or indirectly to a
routine in another bank, the access to the string will fail.

There are two remedies for that: either tag those constant strings as nonbanked
— which is non-standard and uses up space in the nonbanked area — or copy
those constants to nonbanked RAM — which is tedious and redundant —. Unfor-
tunately in all cases the fact that banking occurs is visible to the programmer.

5 Architecture Overview

Similar to the original structure of Alan Baldwin’s program the revised linker
is organized in several modules according to the building blocks of the object
files.

In the revised linker I have tried to abstract as much as possible from concrete
underlying implementation structures (like linked lists) but provide access to
them only via defined module interfaces. This makes the access sometimes a
bit clumsier but encapsulates design decisions and also allows to optimize data
structures centrally.

The top level module is the Main module which initializes and finalizes all other
modules. It scans the commandline and gives all files found to the parser for a
two-pass analysis. After the first pass undefined symbol references are resolved
via the Library module.

The Parser module knows about the syntax of object and library files and calls
the appropriate build routines from other modules in the first pass for symbol
allocation and general construction of the internal network of related objects.

When banking is used, all interbank calls are modified using stub symbols during
the first pass (where resulting trampoline calls and symbol definitions go into a
synthetic object file).

Dr. Thomas Tensi 2009-10-08 5

Revised Linker Documentation

Main

‘Banl:ing‘ ‘CndeO:’ztp\.l.t"“ ‘Cndes.e;quence‘ ‘Lib:ary‘ , ‘List‘ing;pdate;“-i ‘Ma‘pFile’eI."._ ‘ T;rget ‘
‘Modulc‘ ‘NOICEMapF‘i]c‘ ‘Parscr‘ ‘ Scamlcr‘ ‘ Sn'ingTablc‘ ‘Symbol ‘ ‘ Gameboy ‘ ‘ other platform ‘
.
GlobDefs

Figure 1: Module Dependencies of “Main” Module

At the end of the first pass the map file is written (if requested) using the
MapFile module.

In the second pass the code is relocated by routines of the C'odeSequence module.
This module feeds the CodeOutput module which builds some internal repre-
sentations for output of code in several formats. Note that it is possible to have
several formats built in parallel (like e.g. S-records and Gameboy format).

At the end of the second pass — if requested — the ListingUpdater module
traverses all available assembler listings and inserts the code data gathered by
linking. This module is not very clever and heavily relies on the structure of
the listing files currently provided by the SDCC compiler.

Figure 1 shows all modules of the linker and the usage dependencies of main. In
the course of the document other usage dependencies will be illustrated where
red arrow lines show dependencies from interface to another interface and black
arrow lines show dependencies from implementation to another interface.

6 Module Interfaces

This section defines the module interfaces in detail. It is directly generated from
the module include files leaving out implementation details exposed there.

All those interfaces follow an object-based approach. Whenever a module im-
plements a type, there are routines to make instances of that type and those
which manipulate object of that type (the latter have an object of the module
type as a first parameter).

Dr. Thomas Tensi 2009-10-08 6

Revised Linker Documentation 6.1 Global Definitions Module

The naming convention used is as follows:

e All names have the module name as a prefix with single underscore for
externally visible names and two underscores for internal names with file
scope.

e The main type of a module is named Type (like e.g. List_Type).

e The constructor routines are called make or makeXXX, destructor routines
destroy.

e When a module defines an object type with reference-semantics, those
references point to private structures with some magic number. An object
pointer can then be checked for validity by a routine isValid.

e If some internal module data must be kept, a module exports routines
called initialize and finalize for initial setup and final cleanup. When
initialization is done, also finalization must be executed, but a stateless
module may have no such routines.

Main
‘Banl‘dng‘ ‘Codc(?utput‘ ‘Cochclqucnco‘ ‘Lib!"ary‘ ‘Listing?pdatcr‘ ‘Ma}’)Filc‘ ‘ Ta{gct ‘
\\\ \\\ \\\ v‘\ 1 i ’/ ,’/
Module NoICEMapFile Parser Scanner StringTable Symbol ,’l Gameboy rl/ other platform
T N T T T T —T ' T 4
N

7
\ \ \ [/

'
'
| i / .
'

/ /

|
'
'
|
\ \ L ' ' ,
I
'
|

GlobDefs

Figure 2: Module Dependencies onto “Globdefs” Module

6.1 Global Definitions Module

The module GlobDefs provides elementary types and routines used globally in
the program. E.g., a Boolean type is defined here or the code templates for a
very simple assertion checking. Because it is considered to be a globally known
module, its identifiers are not prefixed with the module name (in contrast to
the convention given above), but they are considered universal.

Dr. Thomas Tensi 2009-10-08 7

Revised Linker Documentation 6.1 Global Definitions Module

Figure 2 shows that all modules use the GlobDefs module.

6.1.1 Module “GlobDefs”

This module provides elementary types and routines for the generic ASXXX linker.

The types defined are several integer types, boolean and a generic object type. Addi-
tionally the module provides routines for some rudimentary form of assertion checking.

Because this module is considered to be globally known, its identifiers are universal
and are not prefixed by the module name (contrary to the identifier prefix convention).

include <stddef.h>
include <stdlib.h>

typedef unsigned char UINTS;
typedef signed char INTS;
typedef unsigned int UINT16;
typedef signed int INT16;
typedef unsigned long UINT32;
typedef signed long INT32;
typedef size_t SizeType;

define SizeType_max ...

typedef int Boolean;

define false ...
define true ...

typedef void *Object;
placeholder type (representing all kinds of object types)

define in ...
define inout ...
define out ...

formal parameter modes (purely for documentation)

define NEW (elementType) ...

allocation routine for an object of some element type

define NEWARRAY (elementType, count) ...

allocation routine for an array of elements

define DESTROY (pointer) ...

deallocation routine for a pointer

Boolean PRE (in Boolean condition, in char sprocName, in char xmessage);

Dr. Thomas Tensi 2009-10-08 8

Revised Linker Documentation 6.2 Base Modules

checks precondition condition; if false, message referring to procName is put
out and program is terminated

void ASSERTION (in Boolean condition, in char s#procName, in char xmessage);

checks internal assertion condition; if false, message referring to procName is
put out and program is terminated

Object attemptConversion (in char xopaqueTypeName, in Object object,
in long magicNumber);
generic routine for verifying that object is a pointer to an internal type by
checking the long integer pointed to; if it is not identical to magicNumber, the
program stops with an error message

Boolean isValidObject (in Object object, in long magicNumber);

generic routine for verifying that object is a pointer to an internal type by
checking the long integer pointed to; if it is not identical to magicNumber, the
routine returns false

6.2 Base Modules

o IntegerMap Set

StringList

AN

PN
-7 T

'
\

e AN

1 ' -
- . N VO e o Tt
e oo

Figure 3: Module Dependencies between Base Modules

Those modules provide elementary services (like e.g. assertion checking) or base
collection types (like e.g. lists).

e The Error module offers services for dealing with errors which are classified
into several kinds of criticality and may lead to program abortion in case of
fatal errors. Error output normally goes to stderr, but may be redirected
to any open output file.

e The File module offers very simple file routines like opening, closing, read-
ing and writing a file. For convenience several formatting routines are
provided for numerals, strings and C-strings. The printf-style of C is in-
tentionally not supported.

For handling embedded information within a file a special convention is
introduced: when a file name before the extension ends with ‘Q’ and a
decimal number n this tells that the information starts at seek position n.
In the linker this will be needed for object file libraries.

Dr. Thomas Tensi 2009-10-08 9

Revised Linker Documentation 6.2 Base Modules

e The module Set is for set operations and it is implemented based on
bitmaps. It can only handle sets of few integer elements between 0 and
31, but this is okay for our purposes. It has a value-based semantics so
sets can be copied or passed as parameters like scalar types.

e The String module encapsulates services for strings. Strings are imple-
mented as pointers to dynamically sized memory areas and those strings
can be created, copied, filled from a C-string, searched, subscripted and so
on. Note that strings have a reference-based semantics: directly assigning
a string to another leads to an alias. Therefore the module has an explicit
assignment operation which should be used whenever a copy of a string is
needed. The StringList module only provides construction and printout
of a list of strings; all other services can be taken from the List module.

e The TypeDescriptor module is needed by all generic collections (like lists
and maps). A type descriptor is a structure that tells how some element
in the container is constructed, destroyed, assigned, identified by some
key and hashed. For normal scalar types those operations are trivial,
for reference-based types some function pointers have to be stored in the
structure. Whenever such an element is used in a collection container,
the container knows how to act when some container element is created,
destroyed and so on. When a routine pointer is NULL, nothing has to be
done. A special default descriptor defined in the module consists only of
NULL pointers and can be used for scalar types (which require no special
handling).

e The List module provides services for generic lists. Elements can be con-
catenated to those lists, removed from them, searched for, etc.

For iteration over a list a cursor can be used: it is set on the beginning
of a list and gives some current element. It can be advanced and finally
returns NULL as a signal that no more elements exist.

A type descriptor for the embedded elements is given upon construction
of a list. Consider e.g. a list of strings: when a string element is deleted
from the list, the list should also free the resources of the string to prevent
memory leaks.

e The Map module encapsulates services for generic maps, i.e. partial func-
tions from keys of some type to values of some type. Those maps have
at most one value for some key. As with lists above a type descriptor is
needed for keys. The values in the maps are always considered as non-
unique references and require no specific actions e.g. when a key-value-pair
is deleted.

IntegerMap is a variant of a map where the values are arbitrary integers.
This implementation variant is necessary to allow 0 as a value.

e The Multimap module provides generic multimaps, i.e. partial functions
from keys of some type to sets of values of some type (you can also interpret

Dr. Thomas Tensi 2009-10-08 10

Revised Linker Documentation 6.2 Base Modules

them as relations between the two types grouped by the first relation
partner). Similar to maps the values are considered reference-based, the
key type is specified by a type descriptor upon multimap construction.

6.2.1 Module “Error”

This module provides all services for dealing with errors. Errors are classified into sev-
eral kinds of criticality which define whether only an informational message is written
or the program has to be stopped immediately because of a fatal situation.

Error output normally goes to stderr, but may be redirected to any open output file.

include "file.h”
include ”globdefs.h”

typedef enum {
Error_Criticality_warning, Error_Criticality_error,
Error_Criticality fatalError

} Error_Criticality;

void Error_initialize (void);

sets up internal data structures

void Error_finalize (void);

cleans up internal data structures

void Error_setReportingTarget (in File_Type reportingFile);

all subsequent error output is directed to reportingFile

void Error_raise (in Error_Criticality criticality, in char xmessage, ...);

raises an error with criticality displaying message; the message string may
be a printf-style template with parameters which are filled by the optional ar-
guments

6.2.2 Module “File”

This module provides all services for handling files in the generic SDCC linker.

A file is specified by a file name which is a string in a platform specific notation.
The path separator is a variable that is set according to the local convention for path
separation (a slash in Unix and a backslash in Windows).

When a file name ends in an at-character followed by a decimal number, its relevant
information is considered to start at that offset. This means that ’file’ and ’file@(’
mean the same.

A file may be opened in several modes where read and write as well as binary and text
variants are distinguished. Writing to a file means that all previous contents starting
at the write position are discarded.

Dr. Thomas Tensi 2009-10-08 11

Revised Linker Documentation 6.2 Base Modules

Because we are only dealing with text files as input to the linker, there is only one read
routine which returns a single line from a file (terminated by a newline string). The
write routines are type-specific; there is intentionally no explicit printf-style routine.
Nevertheless for use by other modules there is also a vararg write routine.

After processing a file must be explicitely closed.

based on the module Ilkfile.c by Alan R. Baldwin

include <stdarg.h>

include ”globdefs.h”
include ”string.h”

typedef struct File__Record xFile_Type;
type representing a file

typedef enum {
File_Mode_read, File_Mode_write, File_Mode_readBinary, File_ZMode_writeBinary
} File_-Mode;

open mode for a file; binary and text modes are distinguished

extern File_Type File_stderr;
standard error file stream, typically routed to the console

extern String_Type File_directorySeparator;

string to separate parts of a directory specification; stands for ”/” in Unix and
”in Windows

define File offsetSeparator ...
character to separate offset part of a file name from the plain file name

void File_initialize (void);

sets up internal data structures for this module

void File_finalize (void);

cleans up internal data structures for this module

Boolean File_open (out File_Type xfile,
in String_Type fileName, in File_ZMode mode);

opens file given by fileName for reading or writing depending on mode; if suc-
cessful, file contains the associated file, otherwise false is returned; note that
the system supports the special file names ”stdin”, ”stdout” and ”stderr” which
access the appropriate terminal streams; when a file is opened for writing, its
previous contents are discarded (possibly in between when the file name contains
an offset separator)

void File_close (inout File_Type xfile);

ends processing of file

Boolean File_exists (in String-Type fileName);

Dr. Thomas Tensi 2009-10-08 12

Revised Linker Documentation 6.2 Base Modules

tells whether file given by fileName exists

void File_readLine (inout File_Type *file, out String Type x*st);

returns next line on file in st including a final newline character; when file
exhausted, st is empty

void File_writeBytes (inout File_Type *file, in UINT8 xdata, in SizeType size);
puts byte array data with length size to file

void File_writeChar (inout File_Type *file, in char ch);

puts character ch to file

void File_writeCharArray (inout File_Type *file, in char xst);

puts NUL-terminated character array st to file

void File_writeHex (inout File_Type xfile,
in UINT32 value, in UINTS digitCount);

puts digitCount least significant bytes of value in hexadecimal to file

void File_writePrintfArguments (inout File_Type xfile, in char xformat,
in StdArg_VarArgList argumentList);

puts all arguments in argumentList according to printf-style format to file

void File_writeString (inout File_Type *file, in String_Type st);
puts string st to file

6.2.3 Module “IntegerMap”

is

This module provides all services for maps from objects to long integers. It redefines

only the set and lookup routine; the other Map routines may be used as is.

This wrapper module is necessary because the map module uses pointers as map values

and returns NULL as a failure indicator. When an integer 0 occurs as a map value,
hence cannot be distinguished from a NULL pointer by the Map module and cannot

it
be

used. IntegerMap does some internal bookkeeping and hides this complication from

its clients which can safely use 0 as a value in an integer map. Instead of NULL
returns notFound when a lookup fails.

include ”globdefs.h”
include "map.h”

typedef Map_Type IntegerMap_Type;

redefined integer map type based on generic map type

define IntegerMap_notFound ...

value returned when lookup fails

long IntegerMap_lookup (in IntegerMap_Type map, in Object key);

it

Dr. Thomas Tensi 2009-10-08

13

Revised Linker Documentation 6.2 Base Modules

searches map for element with identification key and returns associated value or
notFound if none exists

void IntegerMap_set (inout IntegerMap_Type *map, in Object key, in long value);

sets value for key in map

6.2.4 Module “List”

This module provides all services for generic lists. A generic list can take elements of
fixed size where the size is specified upon list creation. Additionally elements can be
searched in the list and appended to the list.

For iteration a cursor can be defined on a list and is used to linearly traverse it and
inspect, change or delete the element in the list where it points to.

A type descriptor for the embedded elements is given upon construction of a list. This
is necessary e.g. for additional cleanup or allocation operations when elements are
deleted or created. For scalar or purely reference-based types the default type descrip-
tor is okay, because those types do not need any additional processing in those cases.

include ”globdefs.h”
include ”typedescriptor.h”
extern TypeDescriptor_Type List_typeDescriptor;

variable used for describing the type properties when list objects occur in generic
types (like other lists)

typedef struct List__Record *List_Type;

generic list

typedef struct List__Linkable xList_Cursor;
cursor to some element within a list

void List_initialize (void);

sets up internal data structures for this module

void List_finalize (void);

cleans up internal data structures for this module

Boolean List_isValid (in Object list);
checks whether list is a valid list

TypeDescriptor_Type List_getElementType (in List_Type list);

returns the type descriptor for the elements in 1ist

List_Type List_make (in TypeDescriptor_Type typeDescriptor);
constructs a single list with elements of the type specified in typeDescriptor;
this parameter specifies element size and how single elements behave on con-
struction, destruction and assignment and how they are compared

Dr. Thomas Tensi 2009-10-08 14

Revised Linker Documentation 6.2 Base Modules

void List_destroy (inout List_Type xlist);

destroys all elements in 1ist and list itself

Object List_lookup (in List_Type list, in Object key);
searches 1ist for element with identification key and returns it or NULL if no
such element exists

Object List_getElement (in List_Type list, in SizeType i);

returns i-th element of 1ist

SizeType List_length (in List_Type list);
returns the length of 1ist

Object xList_append (inout List_Type xlist);

appends newly allocated element to end of 1ist and returns a pointer this new
list element

void List_clear (inout List_Type x*list);

removes all elements in 1list

void List_copy (inout List_Type *destination, in List_Type source);

copies contents from source to destination

void List_concatenate (inout List_Type xlist, in List_Type otherList);

concatenates contents of otherList to list

List_Cursor List_resetCursor (in List_Type list);

returns cursor on head of 1ist; if list is empty, result is NULL
List_Cursor List_setCursorToElement (in List_Type list, in Object key);
Object List_getElementAtCursor (in List_Cursor cursor);

gets element pointed at by cursor

void List_putElementToCursor (in List_Cursor cursor, in Object newValue);
assigns newValue to element pointed at by cursor
void List_deleteElementAtCursor (in List_Cursor cursor);

void List_advanceCursor (inout List_Cursor xcursor);

advances cursor by one element within associated list; if list is exhausted,
cursor is set to NULL

6.2.5 Module “Map”

This module provides all services for generic maps. Those maps represent partial
functions from keys to values and have at most one value for some key.

It is possible to add some value for a key, check the assigned values, remove some value
or even delete the assignment for some key completely.

Dr. Thomas Tensi 2009-10-08 15

Revised Linker Documentation 6.2 Base Modules

Because map entries are inserted, assigned to and discarded, a type descriptor for keys
must be provided when a map is created. There is no such descriptor for the values
in the maps, because they are always considered as non-unique references and require
no specific action.

include ”globdefs.h”
include ”list.h”
include ”typedescriptor.h”

typedef struct Map__Record «Map_Type;

map type based on private underlying structure type

void Map_initialize (void);

sets up internal data structures for this module

void Map_finalize (void);

cleans up internal data structures for this module

Boolean Map_isValid (in Object map);

checks whether map is a valid map

TypeDescriptor_Type Map_getKeyType (in Map_Type map);
gets type descriptor for keys in map

Map_Type Map_make (in TypeDescriptor_Type keyTypeDescriptor);

constructs a single map with keys conforming to keyTypeDescriptor and object
values

void Map_destroy (out Map_-Type xmap);

destroys all elements in map and map itself

Object Map_lookup (in Map-Type map, in Object key);

searches map for element with identification key and returns associated value or
NULL if none exists

void Map_getKeyList (in Map_Type map, inout List_Type xkeyList);
gets list of keys of map and returns them in keyList

void Map_clear (inout Map_Type *map);

removes all elements in map

void Map_set (inout Map_Type xmap, in Object key, in Object value);

sets value for key in map

void Map_deleteKey (inout Map_Type *map, in Object key);
removes key from map; when key is not in map, nothing happens

Dr. Thomas Tensi 2009-10-08 16

Revised Linker Documentation 6.2 Base Modules

6.2.6 Module “Multimap”

This module provides all services for generic multimaps. Those multimaps represent
partial functions from keys to sets of values and have at most one set of values for
some key.

It is possible to add some value for a key, check the assigned values, remove some value
or even delete the assignment for some key completely.

include ”globdefs.h”
include "map.h”
include ”typedescriptor.h”

typedef Map_Type Multimap_Type;
multimap type based on map type

void Multimap_initialize (void);

sets up internal data structures for this module

void Multimap_finalize (void);

cleans up internal data structures for this module

Boolean Multimap_isValid (in Object map);

checks whether map is a valid multimap

TypeDescriptor_-Type Multimap_getKeyType (in Multimap_Type map);
gets type descriptor for keys in map

Multimap_Type Multimap_make (in TypeDescriptor_Type keyTypeDescriptor);
constructs a single multimap with keys conforming to keyTypeDescriptor

void Multimap_destroy (out Multimap_Type *map);

destroys all elements in map and map itself

List_Type Multimap_lookup (in Multimap_Type map, in Object key);

searches map for element with identification key and returns associated value list
or NULL if none exists

void Multimap_clear (inout Multimap_Type *map);

removes all elements in map

void Multimap_add (inout Multimap_Type *map, in Object key, in Object value);

adds value to key in map

void Multimap_deleteKey (inout Multimap_Type *map, in Object key);

removes key and all its entries from map; when key is not in map, nothing happens

void Multimap_deleteValue (inout Multimap_Type *m,
in Object key, in Object value);

Dr. Thomas Tensi 2009-10-08 17

Revised Linker Documentation 6.2 Base Modules

6.2.7 Module “Set”

This module provides all services for handling sets represented as long integers (bit-
sets). Those sets can only carry integer elements in the range of 0 to 31 (or enumeration

types).

The standard routines are available to make a set empty (clear), to check whether

it is empty (isEmpty), to find some element in the set (firstElement), to make a

singleton set from one element (make), to find the complement set (complement), to

test set membership (isElement) and to in-/exclude an element (include, exclude).

include ”globdefs.h”

typedef long Set_Type;

a set may contain the elements 0..31

typedef char Set_Element;
the base type of the set

void Set_initialize (void);

sets up internal data structures

void Set_finalize (void);

cleans up internal data structures

Set_Type Set_make (in Set_Element element);

makes a singleton set from element

void Set_clear (out Set-Type xset);

makes set empty

Set_Element Set_firstElement (in Set_Type set);

finds out first element in set when not empty

Boolean Set_isElement (in Set-Type set, in Set_Element element);

tells whether element occurs in set or not

Boolean Set_isEmpty (in Set_Type set);
finds out whether set is empty

Set_Type Set_complement (in Set_Type set);

returns the complement set of set

void Set_include (inout Set_Type xset, in Set_Element element);

adds element to set

void Set_exclude (inout Set_Type *set, in Set_Element element);

removes element from set

Dr. Thomas Tensi 2009-10-08

18

Revised Linker Documentation 6.2 Base Modules

6.2.8 Module “String”

This module provides all services for handling strings in the SDCC linker.

Those strings are pointers to dynamically sized memory areas and are not type com-
patible with C-strings. There is a complete set of manipulation routines available
(assignment, search, slicing, ...) and also the conversion from and to integers or C-
strings.

Note that the first character in a string has index 1.

include ”globdefs.h”
include ”typedescriptor.h”
define String_terminator ...
character defining the end of a character array

define String notFound ...

value returned when some string lookup routine fails

typedef struct String__Record xString_Type;
a character string

extern TypeDescriptor_Type String_typeDescriptor;

variable used for describing the type properties when string objects occur in
generic types like lists

extern String_Type String_newline;

string representing a newline

extern String_Type String_emptyString;
an empty string

void String_initialize (void);

sets up internal data structures for this module

void String_finalize (void);

cleans up internal data structures for this module

String_Type String-allocate (in SizeType capacity);

allocates string with at most capacity significant characters

String_Type String-make (void);

constructs empty string

String_Type String-makeFromCharArray (in char xsource);

constructs string from character array source

void String_destroy (inout String-Type *st);

deallocates string st

Dr. Thomas Tensi 2009-10-08 19

Revised Linker Documentation 6.2 Base Modules

char String_getAt (in String_Type st, in SizeType i);
gets character at i-th position in st and returns it; when i is less than 1 or
greater than the string length, this routine fails

char *String_asCharPointer (in String_Type st);

returns character array representation of string terminated by NUL

void String clear (inout String Type *st);

clears contents of st

void String_copy (out String_Type xdestination, in String_Type source);

copies contents of source into destination

void String_copyAligned (out String_Type *destination,
in UINT8 maxLength, in String_Type source,
in char fillChar, in Boolean isLeftAligned);
formats source into destination using at most maxLength characters; if source
is shorter than maxLength, the remaining space is filled with fillChar; when
isLeftAligned source is aligned left in destination, otherwise right

void String_copyCharArray (out String_Type *destination, in char xsource);

copies contents of source into destination up to and including String_terminator

void String_copyCharArrayAligned (out String-Type *destination,
in UINT8 maxLength, in char *source,
in char fillChar, in Boolean isLeftAligned);
formats source into destination using at most maxLength characters; if source
is shorter than maxLength, the remaining space is filled with fillChar; when
isLeftAligned source is aligned left in destination, otherwise right

void String_copylInteger (out String_Type *destination, in INT32 value,
in UINTS base);

formats value with base and copies result into destination

void String_copylntegerAligned (out String Type *destination,
in UINTS8 maxLength, in INT32 value,
in UINTS base,
in char fillChar, in Boolean isLeftAligned);

formats integer value with base into destination using at most maxLength
characters; if resulting number string is shorter than maxLength, the remaining
space is filled with fillChar; when isLeftAligned source is aligned left in
destination, otherwise right

void String_append (inout String_Type *destination,
in String_Type otherString);

appends contents of otherString to destination

void String_appendChar (inout String_Type xdestination, in char ch);

appends character ch to destination

Dr. Thomas Tensi 2009-10-08 20

Revised Linker Documentation 6.2 Base Modules

void String_appendCharArray (inout String_Type *destination,
in char xotherString);

appends contents of otherString to destination

void String_appendInteger (out String Type *destination, in UINT32 value,
in UINTS8 base);

formats value with base base and appends result to destination

void String_deleteCharacters (inout String-Type xst, in SizeType position,
in SizeType count);

deletes count characters in st starting at position

void String_fillWithCharacter (inout String Type *st, in char ch,
in SizeType count);

fills first count characters of st with character ch

void String_prepend (inout String Type *destination,
in String Type otherString);

prepends contents of otherString to destination

void String_prependChar (inout String-Type xdestination, in char ch);

prepends character ch to destination

void String_prependCharArray (inout String Type *destination,
in char xotherString);

prepends contents of otherString to destination

void String_prependInteger (out String_Type xdestination, in UINT32 value,
in UINTS8 base);

formats value with base base and prepends result to destination

void String removeTrailingCrLf (inout String Type xst);

removes trailing line feed or carriage return characters of st

void String_convertToCharArray (in String Type st, in SizeType maxSize,
out char xchList);

puts contents of st into character array chList terminated by String_terminator
when length of st is less or equal to maxSize

Boolean String_convertToLong (in String_Type st, in UINTS8 defaultBase,
out long *result);

parses contents of st as long number with default base defaultBase and returns
result in result; any base changing prefices (like ”0x”) are interpreted; returns
false on failure

void String_convert ToUpperCase (in String_Type st, out String_Type result);

returns upper case representation of st in result

SizeType String_findCharacter (in String_Type st, in char ch);

Dr. Thomas Tensi 2009-10-08 21

Revised Linker Documentation 6.2 Base Modules

locates ch in st and returns its position; when ch does not occur, notFound is
returned

SizeType String_findCharacterFromEnd (in String_Type st, in char ch);

locates ch in st starting at end of string and returns its position; when ch does
not occur, notFound is returned

SizeType String_find (in String_Type st, in String_Type substring);
locates substring in st and returns its position; when substring does not
occur, notFound is returned

SizeType String_findFromEnd (in String_Type st, in String_Type substring);

locates substring in st starting at end of string and returns its position; when
substring does not occur, notFound is returned

char String_getCharacter (in String_Type st, in SizeType i);

gets i-th character in st where the first character has index 1

void String getSubstring (out String-Type xresult, in String_Type st,
in SizeType startPosition, in SizeType count);
gets substring of st from startPosition of at most count characters into
result; fails when startPosition is non-positive or count is negative

Boolean String-hasPrefix (in String-Type st, in String_Type prefix);
tells whether st has leading prefix

Boolean String_hasSuffix (in String_Type st, in String Type suffix);

tells whether st has trailing suffix

SizeType String_length (in String_Type st);

returns length of string st

Boolean String-isEqual (in String_Type strA, in String-Type strB);

tells whether two strings strA and strB are equal

SizeType String_hashCode (in String-Type st);

computes the hash code for string st; a simple hash code is used: if the sequence
of character codes is c_1,c_2,...,c_n, its hash value will be SUM (2" ™" % c_i)

6.2.9 Module “StringList”

This module provides services for lists of strings.

It only provides a specific constructor, a customized append routine and a write rou-
tine. For all other operations the standard list routines must be used.

include ”file.h”
include ”list.h”
include ”string.h”

Dr. Thomas Tensi 2009-10-08 22

Revised Linker Documentation 6.2 Base Modules

typedef List_Type StringList_Type;
StringList_Type StringList_make (void);

constructs a single list with string elements

void StringList_append (inout StringList_Type *list, in String_Type st);
appends string st to end of 1ist

void StringList_write (in StringList_Type list, inout File_Type xfile,
in String_Type separator);

writes 1ist to file, where all entries are terminated by separator

6.2.10 Module “TypeDescriptor”

This module encapsulates services for generic handling of objects within some con-
tainer structures. Containers within the linker always use pointers to elements. The
elementary operations for those element types must be defined and are referenced by

a type descriptor.

Those elementary operations are: construction of some object, destruction of an ob-

ject, assignment of one object to another, comparison of two objects for equality,

calculating some hash code for an object and checking whether some object has a

specific key. When such a routine is not defined for some type, a reasonable default

(like e.g. a pointer comparison) is used.

include ”globdefs.h”
typedef void (xTypeDescriptor-AssignmentProc)(in Object *destination,
in Object source);
generic routine type describing the assignment of an object to another

typedef Boolean (xTypeDescriptor_ComparisonProc)(in Object objectA,
in Object objectB);

generic routine type describing the equality check of two objects

typedef Object (xTypeDescriptor_ConstructionProc)(void);

generic routine type describing the creation of an object

typedef void (xTypeDescriptor_DestructionProc)(inout Object xobject);

generic routine type describing the destrucion of an object

typedef SizeType (xTypeDescriptor_HashCodeProc)(in Object object);

generic routine type describing the hash code calculation for an object

typedef Boolean (xTypeDescriptor_KeyValidationProc)(in Object object,
in Object key);

generic routine type describing the check of some object against some key

Dr. Thomas Tensi 2009-10-08

23

Revised Linker Documentation 6.2 Base Modules

typedef struct {
SizeType objectSize;
TypeDescriptor_AssignmentProc assignmentProc;
TypeDescriptor_ComparisonProc comparisonProc;
TypeDescriptor_ConstructionProc constructionProc;
TypeDescriptor_DestructionProc destructionProc;
TypeDescriptor_HashCodeProc hashCodeProc;
TypeDescriptor_KeyValidationProc keyValidationProc;
} TypeDescriptor_Record,;
type defining the central characteristics of some type: its size, routines for assign-
ment, construction, destruction, comparison and key validation; when a routine
is NULL, the corresponding bitwise operations are used as a default (e.g. a
memmove for assignment)

typedef TypeDescriptor_Record *TypeDescriptor_Type;

extern TypeDescriptor_Type TypeDescriptor_default;

default type descriptor using standard bitwise operations; this descriptor can e.g.
be used for containers of plain pointers which have no constructors, destructors
or specific assignment operations

extern TypeDescriptor_Type TypeDescriptor_plainDataTypeDescriptor;

type descriptor for plain data types (like integers) using standard bitwise oper-
ations and a hash code which interpretes the value of the data type

void TypeDescriptor_initialize (void);
sets up internal data structures for this module

void TypeDescriptor_finalize (void);
cleans up internal data structures for this module

void TypeDescriptor_assignObject (in TypeDescriptor_Type typeDescriptor,
inout Object *destination,
in Object source);

assigns source to destination with the assignment routine defined in typeDescriptor

Boolean TypeDescriptor_checkObjectForKey (
in TypeDescriptor_Type typeDescriptor,
in Object object, in Object key);
checks whether object has key with the key checking routine defined in typeDescriptor

Boolean TypeDescriptor_compareObjects (
in TypeDescriptor_Type typeDescriptor,
in Object objectA, in Object objectB);
checks whether objectA and objectB are equal with the equality checking rou-
tine defined in typeDescriptor

void TypeDescriptor_destroyObject (in TypeDescriptor-Type typeDescriptor,
inout Object *object);

Dr. Thomas Tensi 2009-10-08 24

Revised Linker Documentation 6.3 Linker Specific Modules

destroys existing object with the destruction routine defined in typeDescriptor
and nullifies pointer

Object TypeDescriptor_makeObject (in TypeDescriptor_Type typeDescriptor);

makes new object with the creation routine defined in typeDescriptor

SizeType TypeDescriptor-objectHashCode (in TypeDescriptor_Type typeDescriptor,
in Object object);
returns hash code for object with the hash code calculation routine defined in
typeDescriptor

6.3 Linker Specific Modules

Those modules provide linker-specific services and rely on the base modules
defined in the previous section.

e The module Area handles areas and segments. Those are groups of code
or data with similar properties like being overlayed or getting assigned to
some specific memory location. Areas are abstract groupw while segments
are concrete instances of areas within some object module.

Normally there is some current area where all symbols and code encoun-
tered in a code module is put.

e The module Banking handles interbank calls by introducing trampoline
calls in the nonbanked area. This requires some trickery by synthesizing an
object file. The mechanism is completely platform-independent, because
all specifics are delegated by callbacks to the Target module.

e The module CodeOutput centralizes the output to the code files. Several
such output streams are available and they may use arbitrary output for-
mats. Each stream has to be registered upon program startup and uses a
platform-dependent code output routine. When some code sequence has
to be put out, CodeOutput dispatches that request to all open output
streams. An example of a platform-specific output routine can be found
in the Gameboy module.

e The module CodeSequence encapsulates code sequences, i.e. byte se-
quences to be put to some bank at some specific address. One central
routine can apply a list of simple relocations to a given code sequence,
where a simple relocation specifies some position in the code sequence, an
offset value and some indication on how the value pointed to has to be
combined with the offset (e.g. added).

e The module Library encapsulates services for object file libraries. Those
are searched for in directories and under specific names. A single rou-
tine searches all matching files for symbol definitions matching unresolved

Dr. Thomas Tensi 2009-10-08 25

Revised Linker Documentation 6.3 Linker Specific Modules

symbol references at the end of the first linking pass, resolves those and
adds the matching files to the code base and the symbols to the symbol
table for further processing.

e The module ListingUpdater updates assembler listings associated with
all link objects files (except for libraries) by inserting relocated code at
appropriate places.

e The module MapFile provides services for generation of map files to give
an overview about the object files read, the allocation of symbols and
areas and the library files used.

Several map files can be open at once and each may have a different routine
for output. Those target files and map output routines must be registered
at the MapFile module and are then automatically fed.

e The module Module encapsulates the concept of a “module”. A module
is a group of code and data areas belonging together and is the root of all
related linker objects. Its associated areas and symbols are accessible via
several routines.

e The module Parser is responsible for analysing tokenized character streams.
Those can be single or list of object files where the parser calls other mod-
ules to build up internal object structures.

A reduced scan for a simple list of symbols encountered is also possible
and the analysis of key-value-assignments by equations.

e The module scanner gathers character streams to tokens. Those character
streams are given as a read-character-routine and the tokens are — among
others — identifier, numbers and operators. As typical for parsing, tokens
may be pushed back onto input to allow for some lookahead during parsing.

e The module stringtable encapsulates two string tables (or string lists) con-
taining the global base address definitions and the global symbol defini-
tions as strings.

e The module symbol administers symbols with name, associated segment
and address. The internal table also stored whether a symbol has been
defined, referenced or both. To assist banking a symbol may be split into
a real and a surrogate symbol and finally a list of referenced but undefined
symbols may be obtained.

6.3.1 Module “Area”

This module provides all services for area definitions in the generic SDCC linker.

An area is a group of code or data snippets which share some properties. E.g., code
within an area may be overlayed if the area specifies that. Areas are abstract groups

Dr. Thomas Tensi 2009-10-08 26

Revised Linker Documentation 6.3 Linker Specific Modules

gf % Banking F%—:j(‘ochutput F . { CodeSequence & R B 1 Library‘: :‘ ListingUpdater ‘ MapFile ‘ ‘ Ta;get ‘
W T \ \E‘—:.;—E“‘-~—~;_;
W S Tesll Tl \ -l
‘ Mo‘dule ‘ ‘ NolCEMapFile ‘ \\T Parser ‘ ‘ Scanner " .. ‘ StringTable ‘ ‘ Sy:ubol ‘ ‘ Gameboy }\\ other platform ‘

| N
1 Sl
'
'
' N S .
| N S .. \

MultiMap IntegerMap Set.
T \ B

D
\
\
\

Figure 4: Module Dependencies of “Area” Module

that are defined by segments within modules. le., segments within object modules
with the same name are considered to belong to the same area and inherit its attributes.

One can query this module for all areas, for the name and attributes of a specific area,
the list of its segments and so on. It is also possible to set most of those properties as
well.

There is also the concept of a current area, which is the area currently active during
processing of a module. All definitions go to the segment belonging to this area and
the current module.

Finally an area may be linked: all addresses of segments within that area are resolved
(depending on whether they are overlayed or concatenated).

based on the module lkarea.c by Alan R. Baldwin

include ”globdefs.h”

include ”list.h”

include ”set.h”

include ”string.h”

include "target.h”

include ”typedescriptor.h”

typedef struct Area__SegmentRecord xArea_Segment;

a segment within an area (as an opaque type)

typedef List_Type Area_SegmentList;
a list of segments

include "module.h”
include ”symbol.h”

typedef struct Area__Record xArea_Type;

type representing a group of link segments

typedef enum {

Dr. Thomas Tensi 2009-10-08 27

Revised Linker Documentation 6.3 Linker Specific Modules

Area_Attribute_isAbsolute, Area_Attribute_hasOverlayedSegments,
Area_Attribute_hasPagedSegments, Area_Attribute_isinCodeSpace,
Area_Attribute_isInExternalDataSpace, Area_Attribute_isInBitSpace,
Area_Attribute_isNonloadable

} Area_Attribute;

properties of an area like being absolute, having overlayed or paged segments and
special flags for different other target platforms; absence of certain properties is
specified by not including them into the set

typedef Set_Type Area_AttributeSet;
set of Area_Attribute

typedef List_Type Area_List;
a list of areas

extern TypeDescriptor_Type Area_typeDescriptor;

variable used for describing the type properties when area objects occur in
generic types like lists

extern TypeDescriptor_Type Area_segmentTypeDescriptor;

variable used for describing the type properties when segment objects occur in
generic types like lists

void Area_initialize (void);

sets up all internal data structures

void Area_finalize (void);

cleans up all internal data structures

Area_Type Area_make (in String-Type areaName,
in Area_AttributeSet attributeSet);

ensures that a new area with areaName exists; its attributes are given by attributeSet;
when set of attributes is not identical to previous area definition, this is an error

void Area_makeSegment (in String_Type areaName,
in Target_Address totalSize,
in Area_AttributeSet attributeSet);

adds a new segment to area with areaName; size of segment is given by totalSize,
attributes by attributeSet; when set of attributes is not identical to previous
area definition, this is an error

void Area_makeAbsoluteSegment (void);

adds a new segment to absolute area

Area_AttributeSet Area_makeAttributeSet (in UINTS8 attributeSetEncoding);

constructs an area attribute set from some external encoding

void Area_destroy (inout Area_Type xarea);

destroys area completely and frees all its resources

Area_Segment Area_currentSegment (void);

Dr. Thomas Tensi 2009-10-08 28

Revised Linker Documentation 6.3 Linker Specific Modules

returns currently active segment

void Area_getList (inout Area_List xareaList);

returns list of all known areas in areaList

void Area_getName (in Area_Type area, out String_Type *name);

returns name of area in name

Area_AttributeSet Area_getAttributes (in Area_Type area);
returns attributes of area

Target_Address Area_getAddress (in Area_Type area);
returns address of area

void Area_getListOfSegments (in Area_Type area,
out Area_SegmentList xsegmentList);

returns segments of area in segmentList

UINT8 Area_getMemoryPage (in Area_Type area);

returns assigned memory page for area (if applicable for platform)

Target_Address Area_getSegmentAddress (in Area_Segment segment);

returns address of segment

Area_Type Area_getSegmentArea (in Area_Segment segment);

returns area of segment

void Area_getSegmentName (in Area_Segment segment, out String_Type xname);

returns name of segment in name

Module_Type Area_getSegmentModule (in Area_Segment segment);

returns associated module for segment

void Area_getSegmentSymbols (in Area_Segment segment,
out Symbol_List *symbolList);

returns all symbols in segment in symbolList

Target_Address Area_getSize (in Area_Type area);

returns size of area

void Area_setCurrent (in Area_Segment segment);

sets current segment to segment

void Area_lookup (out Area_Type *area, in String_Type areaName);

looks up area with name and sets area accordingly (or to NULL, if not found)

void Area_addSymbolToSegment (inout Area_Segment *segment,
in Symbol_Type symbol);

adds symbol to module of segment

void Area_clearListOfSegments (inout Area_Type *area);

Dr. Thomas Tensi 2009-10-08 29

Revised Linker Documentation 6.3 Linker Specific Modules

removes all segments of area

void Area_link (void);

resolves all area addresses by traversing all the areas and the associated seg-
ments; the address allocation is done depending on the attributes of the area: -
for overlayed areas all segments starts at the identical base area address overlay-
ing each other and the size of the area is the maximum of the area segments - for
concatenated areas all segments are concatenated with the first segment starting
at the base area address and the size of the area is the sum of the segment sizes
if a base address for an area is specified then the area will start at that address.
Any relocatable areas defined subsequently will be concatenated to the previous
relocatable area if it does not have a base address specified; additionally the
symbols named s_areaName and l_areaName are created to define the starting
address and length of each area

void Area_replaceSegmentSymbol (inout Area_Segment xsegment,
in Symbol_Type oldSymbol,
in Symbol_Type newSymbol);

replaces 01dSymbol in symbol list of segment by newSymbol; does nothing when
01dSymbol does not occur

void Area_setBaseAddresses (in String Type segmentName,
in Target_Address baseAddress);

sets addresses of all segments with segmentName to baseAddress

void Area_setSegmentArea (inout Area_Segment xsegment, in Area_Type area);

sets area of segment to area

void Area_toString (in Area_Type area, out String-Type *representation);

constructs a printable representation of area and its internal data (for debugging
purposes) and concatenates it to representation

void Area_segmentToString (in Area_Segment segment,
out String_Type srepresentation);
constructs a printable representation of segment and its internal data (for de-
bugging purposes) and concatenates it to representation

6.3.2 Module “Banking”

This module provides all services for code banking in the generic linker.

Banking is done by reading a banking configuration file which tells the assignments of
modules to bank numbers. Whenever a jump from one code bank to a parallel bank
occurs, this jump is replaced by a jump to stub code in a nonbanked area which takes
care of the bank switching and also restores the calling bank when a return occurs (for
a subroutine call).

Unfortunately this mechanism only works for control flow via bank boundaries! It fails
e.g. when some constant should be read from another code bank. So you should not

Dr. Thomas Tensi 2009-10-08 30

Revised Linker Documentation 6.3 Linker Specific Modules

Areal " |Bankingh3i Cuchut/p—u/t “"|CodeSequence|” " {Library|. .. |ListingUpdater MapFile Tz\:gct
‘ #' ti ~—— .‘ ‘ “ ‘ ‘ - ‘ ‘ ‘ ‘
¢ ., TIzs ..

‘ Gameboy ‘ ‘ other platform ‘

\ Mod‘u‘le‘ \ I\'()ICEI\’I‘apFiIe | Par;;r\}\fj Scanner| """ Striné’i‘;xi)ie [Sy:nbnl B

\

MultiMap StringList

\ .
\ .

IntegerMap . Set

Figure 5: Module Dependencies of “Banking” Module

do it (also not accidentally by passing constants as parameters to routines in other
banks)...

All this code change is done on-the-fly in the linker based on the configuration file. So
the decision about bank assignment can be done at link time and must not be done
at compile time. This also means that libraries can be arbitrarily placed in banks
without recompilation.

After the first link pass when all symbols have been resolved, the linker tracks whether
interbank references occur. For each interbank reference to some symbol, another
artificial symbol is introduced (e.g. by adding a prefix). This symbol will be defined
by the linker and is located in a nonbanked area (which can be reached from all banks).
It stands for a trampoline call where the current bank is stored, the bank is switched
to the target bank and finally the jump to the target address is done.

For all that, the linker generates a temporary object file containing the definitions of
the surrogate symbols and the program-specific trampoline code. The glue code for
bank switching comes from a library which is searched after inserting the generated
banking object file.

Of course, the specifics (and especially the code!) for banking heavily depend on the
target platform. Hence the generic routines in the banking module rely on a variable
which describes all characteristics of the target platform needed for banking. This
variable tells the names of the generic banked area and the nonbanked area for the
trampoline calls, how to construct a real banked area name from the bank number
and most importantly a routine which generates the trampoline code for a single call.
Note that the latter is somewhat tricky because this routine must generate object code
(which references indexes of symbols...).

The variable is set when the target platform plugin is initialized. When banking is
not used, the variable is null.

include ”globdefs.h”
include ”string.h”
include ”stringlist.h”

Dr. Thomas Tensi 2009-10-08 31

Revised Linker Documentation 6.3 Linker Specific Modules

typedef int Target_Bank;

type defined here to break circular include when importing ”target.h”

typedef void (xBanking_CallTemplateProc) (in UINT16 startAddress,

in UINT16 referenced Arealndex,

in UINT16 targetSymbollndex,

in UINT16 jumpLabelSymbollndex,

out String_Type xcodeSequence);
routine type for constructing the code for a trampoline call in the nonbanked
code area; the start address of the code within the segment is given as startAddress,
the target symbol is given by targetSymbolIndex in area with index referencedArealndex
and the jump label symbol as index jumpLabelSymbolIndex in the same area;
the routine returns several code lines in codeSequence: a T line with the call
and a relocation line referencing the target symbol and the bank switch label

e.g. in the GBZ80 implementation for a call to routine XYZ in bank 23 the
following trampoline call code (in assembler notation) is generated

BC_XYZ: LD HL,#XYZ // JMP Banking_switchTo_23

this means that a definition for ’"BC_XYZ” in the nonbanked area is used and
a reference to ”Banking_switchTo-23” in banked area 23; the code sequence
effectively consists of six bytes (a 16 bit load and an absolute jump) represented
by a pair of a T and R line

typedef void (xBanking_NameConstructionProc) (out String_Type *name,
in Target_Bank bank);
routine type for constructing name from bank (e.g. for a jump label for some
bank)

typedef void (*Banking_SurrogateNameProc) (
out String_Type xsurrogateSymbolName,
in String_Type symbolName);
routine type for constructing the surrogate symbol name surrogateSymbolName
used for a trampoline call from symbolName

typedef Boolean (xBanking_TargetValidationProc) (
in String_Type moduleName,
in String_Type segmentName,
in String Type symbolName);
routine type for checking that some symbol is a valid target for an interbank
call (i.e. it has to lie in a code segment) where symbol is characterized by
symbolName, segmentName and moduleName

typedef struct {
String_Type genericBankedCodeAreaName;
/xx name of generic area used for banked code symbols when bank
assignment is not yet done (e.g. "CODE_07) x/
String_Type nonbankedCodeAreaName;
/xx name of area used for nonbanked code symbols (e.g. "BASE”) x/
Banking_NameConstructionProc makeBankedCodeAreaName;
/xx template routine for constructing a banked code area name from

Dr. Thomas Tensi 2009-10-08 32

Revised Linker Documentation 6.3 Linker Specific Modules

a bank (also handling undefined bank correctly) */
Banking_NameConstructionProc makeJumpLabelName;

/xx template routine for constructing the jump label (for bank

switching within a trampoline call) from a bank */
Banking_CallTemplateProc makeTrampolineCallCode;

/xx template routine for constructing a concrete trampoline call
code */

Banking_SurrogateNameProc makeSurrogateSymbolName;

/xx template routine for constructing a concrete trampoline
surrogate symbol name from a symbol name */

Banking_TargetValidationProc ensureAsCallTarget;

/xx template routine for checking that some symbol is a valid
target for an interbank call (i.e. it has to lie in a code
segment) x/

UINTS offset PerTrampolineCall;

/xx number of code bytes used for the trampoline call (which is

fized, because no code relazation will occur) x/
} Banking_Configuration;

void Banking_initialize (void);
sets up internal data structures for this module

void Banking finalize (void);
cleans up internal data structures for this module

void Banking_adaptAreaNameWhenBanked (in /«Module_Typex/ void *module,
inout String_Type *areaName);

returns adapted areaName whenever multiple conditions hold: banking is ac-
tive, the area name specifies the generic banked area and additionally module is
banked

Boolean Banking_isActive (void);
tells whether banking is used at all

Target_Bank Banking_getModuleBank (in String_Type moduleName);

returns associated bank for module given by moduleName or undefinedBank if
none exists

void Banking readConfigurationFile (in String-Type fileName);

reads assignments of module to bank from file given by fileName; the file consists
of lines of assignments "modulename = bank”

Boolean Banking resolvelnterbankReferences (inout StringList_Type *fileList);
traverses symbol list for interbank references; if such are found, a temporary
object file is generated containing the trampoline code and its name is added to
fileList; returns false when no interbank reference has occured

Dr. Thomas Tensi 2009-10-08 33

Revised Linker Documentation 6.3 Linker Specific Modules

‘ Banking ‘ ‘ CodeOutput EE - 1 CodeSequence ‘ ‘ Library‘ ‘ ListingUpdater ‘ ‘ MapFile ‘ ‘ Target ‘

‘ Modulc‘ ‘ NOIéEMaPFile ‘ ‘ Parser \W Scanner ‘ - ‘ StringTable

h “ éymbol % N ‘ Gameboy ‘ ‘ other platform ‘

N S

\
S

< 0 N
N ‘. \
\ \
\

S N

Figure 6: Module Dependencies of “CodeOutput” Module

6.3.3 Module “CodeOutput”

This module provides a generic service for putting out code sequences to file in the
generic SDCC linker and some standard implementations for this service (like putting
out Intel Hex format).

There are several code output streams available which have to be activated and get
some code output routine assigned. Other modules feed code sequences into the Code-
Output module and it dispatches them to all listening code output streams.

For convenience the code output routines for Intel Hex and Motorola S19 format are
provided. When those formats are not okay for some platform an own routine must
be provided in the platform specific module and registered upon startup. An example
can be found for the Gameboy platform which uses some simple binary memory dump
format.

based on the module lkihx.c by Alan R. Baldwin

include ”globdefs.h”
include ”codesequence.h”
include "file.h”

include ”string.h”
include ”stringlist.h”

typedef enum {
CodeOutput_State_atBegin, CodeOutput_State_inCode, CodeOutput_State_atEnd
} CodeOutput_State;

state where an output proc may be called: atBegin is for any processing before
output of the first code sequence, inCode is when putting out some intermediate
code line and atEnd is for putting out the final record

typedef void (xCodeOutput_Proc)(inout File_Type «file,
in CodeOutput_State state,
in Boolean isBigEndian,
in CodeSequence_Type sequence);
type representing a routine to put out a code sequence processed by linker; file
is the file descriptor of the executable file, state tells whether the processing

Dr. Thomas Tensi 2009-10-08 34

Revised Linker Documentation 6.3 Linker Specific Modules

is started, in code processing or done, isBigEndian tells the endianness of the
target platform and sequence is the code sequence to be put out (when state is
inCode)

void CodeOutput_initialize (in Boolean targetIsBigEndian);

initializes internal data structures; targetIsBigEndian tells about the endian-
ness of the target platform

void CodeOutput_finalize (void);

cleans up internal data structures

Boolean CodeOutput_create (in String_Type fileName,
in CodeOutput_Proc outputProc);

creates another code output stream on file with filename with a routine for-
matting the code sequences outputProc; when opening the file for writing fails,
the routine returns false

void CodeOutput_closeStreams (void);

puts the terminating record to all open code output streams and additionally
closes all code stream files

void CodeOutput_getFileNames (out StringList_Type xfileNameList);

returns list of file names for all registered output streams

void CodeOutput_writeLine (in CodeSequence_Type sequence);

puts the representation of code sequence sequence to all open code output
streams

void CodeOutput_writelHXLine (inout File_Type xfile, in CodeOutput_State state,
in Boolean isBigEndian,
in CodeSequence_Type sequence);

predefined code output routine producing Intel Hex format

void CodeOutput_writeS19Line (inout File_Type xfile, in CodeOutput_State state,
in Boolean isBigEndian,
in CodeSequence_Type sequence);

predefined code output routine producing Motorola S19 format

6.3.4 Module “CodeSequence”

This module provides all services for scanning code and relocating it in the generic
SDCC linker.

As the name indicates it encapsulates code sequences, i.e. byte sequences to be put to
some bank at some specific address.

Often relocation is needed. This is modeled as a sequence of simple relocations, where
each simple relocation specifies some position in a code sequence, an offset value and
some indication on how the value pointed to has to be combined with the offset. The
central routine of this module applies a relocation list to some code sequence.

Dr. Thomas Tensi 2009-10-08 35

Revised Linker Documentation 6.3 Linker Specific Modules

‘Bankiug‘) ‘mé@&r};ﬁr F N :f‘CodCchucucc’??fJLﬂ;;ry‘. ListingUpdatcr‘ ‘M:pFilc‘ ‘ T;rgct ‘
‘Mod.l;lc‘ ‘NOICEMHPFHE‘ ‘Parser‘ ‘ Scann(\r““",‘ Strin‘g"l"able } .. ‘S;nbnl ‘ ‘ Gameboy ‘ ‘ other platform ‘

MultiMap StringList IntegerMap

Figure 7: Module Dependencies of “CodeSequence” Module

based on the module lkrloc.c by Alan R. Baldwin

include ”globdefs.h”
include ”target.h”

define CodeSequence_maxLength ...

maximum length of single codesequence to be relocated

typedef struct {
/* Area_Segment segment; //changed to break circular includes x/
struct Area__SegmentRecord xsegment;
Target_Bank romBank;
UINT32 offsetAddress;
UINTS length; /xx number of bytes in sequence x/
UINTS byteList[CodeSequence_maxLength];
} CodeSequence_Type;

type representing a code sequence before or after relocation

typedef struct {
Boolean msbBytelsUsed : 1;
Boolean isThreeByteAddress : 1;
Boolean mostSignificantBytelsUsed : 1;
Boolean pagelsReferenced : 1;
Boolean zeroPagelsReferenced : 1;
Boolean datalsSigned : 1;
Boolean slotWidthIsTwo : 1;
Boolean isRelocatedPCRelative : 1;
Boolean isSymbol : 1;
Boolean elementsAreBytes : 1;

} CodeSequence_RelocationKind;

relocation attribute for a single relocation entry

typedef struct {
CodeSequence_RelocationKind kind;
UINTS index;

Set

Dr. Thomas Tensi 2009-10-08

36

Revised Linker Documentation 6.3 Linker Specific Modules

UINT16 value;
} CodeSequence_Relocation;

a single relocation for a previous code line has a relocation kind, an index into
the unrelocated code line and a relocation value (typically some offset)

typedef struct {
/* Area_Segment segment; //changed to break circular includes /
struct Area__SegmentRecord xsegment;
CodeSequence_Relocation list[CodeSequence_maxLengthl];
UINTS count;

} CodeSequence_RelocationList;

a relocation list for a code line has a segment of relocation and several relocations
and a count of relocations

void CodeSequence_initialize (void);

sets up internal data structures

void CodeSequence._finalize (void);

cleans up internal data structures

void CodeSequence_makeKindFromInteger (out CodeSequence_RelocationKind *kind,
in UINTS8 value);

makes a relocation kind kind from some external representation value

void CodeSequence_relocate (inout CodeSequence_Type *sequence,
in UINT16 areaMode,
in CodeSequence_RelocationList srelocationList);
relocates code line sequence based on information in an R line of the linker
input; an R line contains an area index specifying the associated area, a mode
for that area and a list of four byte relocation data: that information is given
in areaMode and relocationList

UINTS8 CodeSequence_convertTolnteger (in CodeSequence_RelocationKind kind);

converts relocation kind kind to external integer representation

Library

‘Banking‘ ‘CodCOuLput ‘ ‘Cochcqucncc
[Module| [NoICEMapFile ‘ Parse‘r

hase

ListingUpdator‘ ‘I\’IapF‘i]c‘ ‘ Target ‘

NS N .
R el T
R AR ..
StringTable Symbol Tl ‘ Gameboy ‘ ‘ other platform
v B el
L
\ . el

\

L] .
e .
Scanner

'
'
\
|
'
'

.) o o \ ‘. . e, .
.'. ."' ..' \ y\‘ .'.. .'.‘
MuliiNiap Tntegerhiap . [ow
g - T g ‘.
: ; ' *. ‘.

2 N 1 .

Figure 8: Module Dependencies of “Library” Module

Dr. Thomas Tensi 2009-10-08 37

Revised Linker Documentation 6.3 Linker Specific Modules

6.3.5 Module “Library”

This module provides all services for object file libraries in the generic SDCC linker.

Object file libraries are searched for in directories given by the (inbound) routine
addDirectory. The names of those libraries are also specified by the routine addFilePathName.

A call to the central routine resolveUndefinedSymbols searches all matching files for
symbol definitions. Those definitions are used to satisfy unresolved references from
the object modules linked so far. This process is repeated until no more resolutions
can be done. All encountered symbols are added to the linker symbol table and the
associated code from the libraries can be added to the code later.

Note that SDCCLIBs with an XML-structure are not yet supported.
based on the module Iklibr.c by Alan R. Baldwin

include ”globdefs.h”

include ”string.h”

include ”stringlist.h”

void Library_initialize (void);

initializes the internal data structures of the library manager

void Library finalize (void);

cleans up the internal data structures of the library manager

void Library_getFileNameList (out StringList_Type xlibraryFileNameList);

returns list of library object files used so far in libraryFileNameList

void Library_addCodeSequences (void);
adds code defined in all referenced library object files

void Library_addDirectory (in String Type path);
adds some directory path to the list of paths

void Library_addFilePathName (in String_Type path, out Boolean xisFound);

adds some library file relative or absolute path; returns in isFound whether
library has been found in directory path list or not

void Library_resolveUndefinedSymbols (void);

searches all specified library files and library directories for undefined symbols
until no more resolutions can be done; adds newly referenced symbols to symbol
table and keeps track of all used library files

6.3.6 Module “ListingUpdater”

This module provides all services for augmenting listing files.

Based on the list of link files, the central routine update scans the appropriate direc-
tories for associated assembler listings and inserts the relocated code at appropriate

Dr. Thomas Tensi 2009-10-08 38

Revised Linker Documentation 6.3 Linker Specific Modules

‘a
‘ Target ‘

“+.. | Gameboy

‘ other platform ‘

Set

ol I .
' I -,

Figure 9: Module Dependencies of “ListingUpdater” Module

places. The code is queried from the Target module and is only available at the end
of the second linking pass.

Note that the module knows very much about the structure of a assembler listing file
and is fragile whenever that structure changes in the future.

include ”globdefs.h”
include ”stringlist.h”

void ListingUpdater_initialize (void);

sets up internal data structures for this module

void ListingUpdater_finalize (void);

cleans up internal data structures for this module

void ListingUpdater_update (in UINTS base, in StringList_Type linkFileList);
update listings with radix base and list of linked files 1inkFileList

Banking| """ ‘Cuchutput‘ ‘CudCchucncc‘ Library

A

Target ‘

‘ E}am‘e‘b‘ny ‘ ‘ other platform ‘

\ Moc;ule\ [NoICEMapFile] "

, /
. /
. / .
. / . N
, B N

/
/ / B

/ / . \
/ / B
K .

MultiMap StringList IntegerMap

7 T
i .
i :

Figure 10: Module Dependencies of “MapFile” Module

Dr. Thomas Tensi 2009-10-08 39

Revised Linker Documentation 6.3 Linker Specific Modules

6.3.7 Module “MapFile”

This module provides all services for putting out mapfiles. Those map files give an
overview about the object files read, the allocation of symbols and areas and the library
files used.

Several map files can be open at once and they may have different output routines.
The map target files and the routines have to be registered in this module and they are
automatically activated when all map information is available. The standard map file
is produced via the output routine generateStandardFile, but there are also variants
possible. One can be found in the Gameboy module, where a map file for the NoGMB
emulator is produced.

include ”area.h”
include "file.h”
include ”globdefs.h”
include ”string.h”

typedef void (xMapFile_CommentOutputProc)(inout File_Type xfile,
in String Type comment);

type representing a routine to conditionally add text from magic comments to
some map file

typedef void (xMapFile_SymbolTableOutputProc)(inout File_Type «file);

type representing a routine to produce a map file of the linker output; file
is the file descriptor of the map file which is already open and will be closed
outside that routine

typedef struct {
MapFile_.CommentOutputProc commentOutputProc;
MapFile_SymbolTableOutputProc symbolTableOutputProc;
} MapFile_ProcDescriptor;

void MapFile_initialize (void);

sets up internal data structures for this module

void MapFile_finalize (void);

cleans up internal data structures for this module

Boolean MapFile_isOpen (void);

tells whether map files are open or not

void MapFile_getSorted AreaSymbolList (in Area_Type area,
out Symbol_List *areaSymbolList);
collects all symbols in area and returns them in areaSymbolList sorted by
address; this is merely a convenience routine to be used by mapfile generators

void MapFile_registerForOutput (in String Type fileNameSuffix,
in MapFile_ProcDescriptor routines);

Dr. Thomas Tensi 2009-10-08 40

Revised Linker Documentation 6.3 Linker Specific Modules

registers routines for mapfile output to file with map file specific extension
fileNameSuffix

void MapFile_openAll (in String_Type fileNamePrefix);

opens all map files with names given by fileNamePrefix plus a map file specific
extension

void MapFile_closeAll (void);

closes all open map files

void MapFile_setOptions (in UINTS base, in StringList_Type linkFileList);

sets options for map file output to radix base and list of linked files 1inkFileList

void MapFile_writeErrorMessage (in String_Type message);

writes message as warning to all currently open map files

void MapFile_writeSpecial Comment (in String Type comment);

writes comment to all currently open map files if relevant for them

void MapFile_writeLinkingData (void);

writes linker symbol information to all currently open map files

void MapFile_generateStandardFile (inout File_Type xfile);

generates canonical map file output into file

‘Banking‘ ‘Code()utput ‘ CodeSequence L . J Library‘ . ;‘ListingUpdater‘ ‘MapFile‘ ‘ Target ‘
' _/_/_,/—4’/’/ N
\ T \
‘ Module }351 i NOICEI\/IHPFHC ... |Parser ‘ ‘ Scanner ‘ ‘ StringTable ‘ ‘ Sy:nbnl ‘ ‘ Gameboy ‘ ‘ other platform ‘
- I -

' N
| ~. -
1

i
' feelll
' N ..
MultiMap Map StringList ’ IntegerMap Set
T b
'
|

<
\

N
String

Figure 11: Module Dependencies of “Module” Module

6.3.8 Module “Module”

This module provides all services for module definitions in the generic SDCC linker.

A module is a group of code and data areas belonging together and is the root of all
related linker objects. Normally a module is defined by a single object file, but in case
of a library several object files may contribute to a single module.

Modules may have associated areas and symbols and appropriate routines provide
access to those lists.

Dr. Thomas Tensi 2009-10-08 41

Revised Linker Documentation 6.3 Linker Specific Modules

There is also the notion of a current module, which is the one where the currently
parsed symbols and areas are associated to.

based on the module lkhead.c by Alan R. Baldwin

typedef struct Module__Record xModule_Type;
type representing a module (as an opaque type)

include ”area.h”
include ”file.h”
include ”globdefs.h”
include ”list.h”
include ”string.h”
include ”symbol.h”

typedef UINT16 Module_SegmentIndex;

type for unique numbers of segments per module

typedef UINT16 Module_Symbollndex;
type for unique numbers of symbols per module

extern TypeDescriptor_Type Module_typeDescriptor;

variable used for describing the type properties when module objects occur in
generic types like lists

void Module_initialize (void);

sets up all internal data structures

void Module_finalize (void);

cleans up all internal data structures

void Module_make (in String_Type associatedFileName,
in Module_SegmentIndex segmentCount,
in Module_Symbollndex symbolCount);

creates a new module structure and links it into the list of module structures;
associatedFileName tells the file name, segmentCount and symbolCount tell
how many area segments and symbols are in this module

void Module_destroy (inout Module_Type *module);
deallocates module

void Module_getFileName (in Module_Type module, out String_Type *fileName);
returns associated file name of module in fileName

void Module_getName (in Module_Type module, out String_Type #name);
returns name of module in name

Area_Segment Module_getSegment (in Module_Type module,
in Module_SegmentIndex segmentIndex);

returns segment with index segmentIndex within module or NULL if not found

Dr. Thomas Tensi 2009-10-08 42

Revised Linker Documentation 6.3 Linker Specific Modules

Area_Segment Module_getSegmentByName (in Module_Type module,
in String Type segmentName);

returns segment with name segmentName within module or NULL if not found

Symbol_Type Module_getSymbol (in Module_-Type module,
in Module_Symbollndex symbollndex);

returns symbol with index symbolIndex within module or NULL if not found

Symbol_Type Module_getSymbolByName (in Module_Type module,
in String Type symbolName);

returns symbol with name symbolName within module or NULL if not found

Module_Type Module_currentModule (void);

returns currently active module

void Module_getModuleList (inout List_Type *moduleList);

returns the list of all modules in moduleList

void Module_getSegmentList (in Module_Type module,
inout Area_SegmentList xsegmentList);

returns the list of all segments within module in segmentList

void Module_getSymbolList (in Module_Type module,
inout Symbol_List xsymbolList);

returns the list of all symbols within module in symbolList

void Module_setCurrentByName (in String_Type name,
out Boolean xisFound);
select current module by associated module name name; isFound tells whether
search has been successful

void Module_setCurrentByFileName (in String Type fileName,
out Boolean xisFound);

select current module by associated file name fileName; isFound tells whether
search has been successful

void Module_setName (in String_Type name);

sets the name of the current module to name

void Module_addSegment (inout Module_Type *module, in Area_Segment segment);

adds segment to module and returns that module

void Module_addSymbol (inout Module_Type *module, in Symbol_Type symbol);
adds symbol to module

void Module_replaceSymbol (inout Module_Type *module, in Symbol_Type oldSymbol,
in Symbol_Type newSymbol);

replaces 01dSymbol in symbol list of module by newSymbol; does nothing when
0ldSymbol does not occur

void Module_toString (in Module_Type module, out String_Type *representation);

constructs a printable representation of module, its internal data and its associ-
ated segments (for debugging purposes) and concatenates it to representation

Dr. Thomas Tensi 2009-10-08 43

Revised Linker Documentation 6.3 Linker Specific Modules

. - ‘ Bankiug‘ ‘Codc()utput‘ ‘Codnchucncc’» b .z. \ ‘ Ta:gct ‘

‘Module‘ ‘ Gameboy ‘ ‘ other platform ‘

MultiMap StringList IntegerMap \\\ Set

Figure 12: Module Dependencies of “NolCEMapFile” Module

6.3.9 Module “NoICEMapkFile”

This module provides all services for putting out mapfiles in NoICE format. The
output routine defined here links into the generic MapFile module of the SDCC linker.

based on module lknoice.c by John Hartman

include "file.h”
include ”globdefs.h”
void NoIlCEMapFile_initialize (void);

sets up internal data structures for this module

void NoIlCEMapFile_finalize (void);

cleans up internal data structures for this module

void NoIlCEMapFile_addSpecialComment (inout File_Type xfile,
in String_Type comment);

adds comment conditionally to NOICE file when it contains a relevant infor-
mation

void NoICEMapFile_generate (inout File_Type «file);
writes a map file in NoICE format to file

6.3.10 Module “Parser”

This module provides all services for parsing tokenized character streams in the generic
SDCC linker.

The parser can parse a single object file or a list of them. It normally calls other
modules to build up internal object networks for an object file, but it also can on
request do a reduced scan and simply return a list of symbols encountered e.g. when
reading a library file.

Dr. Thomas Tensi 2009-10-08 44

Revised Linker Documentation 6.3 Linker Specific Modules

L]
Target ‘

J Gameboy ‘ ‘ other platform ‘

A \\ P

Figure 13: Module Dependencies of “Parser” Module

Other services can parse value assignment equations between some identifier and a
long integer value. Those parsing routines are generic because they do a callback to
some key-value-assignment routine. Note that in contrast to the original linker those
routines cannot parse integer RHS expressions, but only simple values.

include ”globdefs.h”
include ”stringlist.h”

typedef struct {
UINTS8 defaultBase; /x the default base of number strings read */
enum { littleEndian, bigEndian, unknown} endianness;

typedef void (xParser_KeyValueMappingProc)(in String_Type key,
in long value);

callback routine type for mapping string key to integer value to be used in
scanStringList

void Parser_initialize (void);

initializes the internal data structures of the parser

void Parser_finalize (void);

cleans up the internal data structures of the parser

void Parser_collectSymbolDefinitions (in String_Type objectFileName,
inout StringList_Type xsymbolNameList);

parses file given by objectFileName for symbol definitions in command S and
returns them in symbolNameList

void Parser_setDefaultOptions (in Parser_Options options);

sets the options for subsequent parsing

void Parser_parseObjectFile (in Boolean isFirstPass, in String Type fileName);
parses the object file given by fileName for commands X, D, Q, H, M, A, S, T,
R, and P; depending on whether this is in the first or second pass the processing
is different

Dr. Thomas Tensi 2009-10-08 45

Revised Linker Documentation 6.3 Linker Specific Modules

void Parser_parseObjectFiles (in Boolean isFirstPass,
in StringList_Type fileNameList);
parses the object files in fileNameList for commands X, D, Q, H, M, A, S, T,
R, and P; depending on whether this is in the first or second pass the processing
is different

void Parser_setMappingFromList (in StringList_Type valueMapList,
in Parser_KeyValueMappingProc setElementValueProc);
parses the string list in valueMapList for lines of the form ”name=value” and
calls setElementValueProc for each (name,value) pair

void Parser_setMappingFromString (in String_Type valueMapString,
in Parser_KeyValueMappingProc setElementValueProc);
parses the string in valueMapString as a lines of the form "name=value” and
calls setElementValueProc for given (name,value) pair

‘ Banking ‘ ‘ CodeOutput ‘ ‘ CodeSequence ‘ ‘ Library‘ ‘ ListingUpdater ‘ ‘ MapFile ‘ ‘ Target ‘

[Module| [NoICEMapFile]

Parser { _ ,4 Scanner

is: .‘ StringTablc‘ ‘Syml)ol ‘ ‘ Gameboy ‘ ‘ other platform ‘

N
N \
StringList

~

IntegerMap e .. Set

[y]

/
;

\
\
\

Figure 14: Module Dependencies of “Scanner” Module

6.3.11 Module “Scanner”

This module provides all services for tokenizing character streams in the generic SDCC
linker.

Tokenization is done on some input stream specified via a reader routine. A token
consists of a kind, an operator (when kind is ”operator”) and some external string
representation.

Tokens may be pushed back when doing a lookahead during parsing.

include ”globdefs.h”
include ”list.h”

include ”string.h”
include ”typedescriptor.h”

define Scanner_endOfStreamChar ...

character for telling that the end of the input stream has been reached

define Scanner_pushbackStackSize ...

Dr. Thomas Tensi 2009-10-08 46

Revised Linker Documentation 6.3 Linker Specific Modules

maximum number of tokens pushed back for rereading

typedef char (xScanner_ReaderProc)(void);

callback routine for reading next character on some input stream; returns end0fStreamChar
when end of stream is reached

typedef List_Type Scanner_TokenList;

list of tokens

typedef enum {
Scanner_TokenKind_operator, Scanner_TokenKind_identifier,
Scanner_TokenKind_number, Scanner_TokenKind_idOrNumber,
Scanner_TokenKind_newline, Scanner_TokenKind_streamEnd,
Scanner_TokenKind_comment, Scanner_TokenKind_other

} Scanner_TokenKind;

kinds of tokens known by the scanner; idOrNumber is an ambiguous symbol
which consists of hexadecimal characters only

typedef enum {
Scanner_Operator_plus, Scanner_Operator_minus, Scanner_Operator_times,
Scanner_Operator_div, Scanner_Operator_-mod, Scanner_Operator_shiftLeft,
Scanner_Operator_shiftRight, Scanner_Operator_or, Scanner_Operator_and,
Scanner_Operator_complement, Scanner_Operator_assignment,
Scanner_Operator_other

} Scanner_Operator;

different operator tokens

typedef struct {
Scanner_TokenKind kind;
String_Type representation;
Scanner_Operator operator;
} Scanner_Token;

token returned by the scanner

void Scanner_initialize (void);

initializes the internal data structures of the scanner

void Scanner_finalize (void);

cleans up the internal data structures of the scanner

void Scanner_makeToken (out Scanner_Token xtoken);

initializes token

void Scanner_makeTokenList (out Scanner_TokenList *tokenList,
in String Type st);

scans st and returns all tokens found in tokenList

void Scanner_destroyToken (inout Scanner_Token xtoken);

finalizes token

void Scanner_getNextToken (inout Scanner_Token xtoken);

Dr. Thomas Tensi 2009-10-08 47

Revised Linker Documentation 6.3 Linker Specific Modules

returns next token on current input stream in token

void Scanner_ungetToken (in Scanner_Token token);

pushes back token to current input stream; this may be repeatedly called up to
a limit of pushbackStackSize tokens simultaneously pushed back

void Scanner_tokenToString (in Scanner_Token token, out String Type *st);

returns representation of token in st

void Scanner_redirectInput (in Scanner_ReaderProc readerProc);

tells that readerProc is the new routine for getting at the next character

‘Bankiug‘ ‘Cuchutput ‘ ‘Cuchcqucncc‘ ‘Lﬂ)l ary‘ ‘ListingUpdatcr‘ ‘MapFilc‘ ‘ Target ‘

‘ Module‘ ‘ NoICEMapFile ‘ ‘ Parser ‘ ‘ Scanner ‘ .. ‘ StringTable ‘ ‘ Symbol ‘ ‘ Gameboy ‘ ‘ other platform ‘

MultiMap | StringList IntegerMap Set

Figure 15: Module Dependencies of “StringTable” Module

6.3.12 Module “StringTable”

This module provides all services for handling two string tables in the SDCC linker.
Those string tables contain the global base address definitions and the global symbol
definitions as strings.

include ”globdefs.h”
include ”stringlist.h”

typedef StringList_Type StringTable_Type;

extern StringTable_Type StringTable_baseAddressList;
extern StringTable_Type StringTable_globalDefList;
void StringTable_initialize (void);

sets up internal data structures for this module

void StringTable_finalize (void);

cleans up internal data structures for this module

void StringTable_addCharArray (inout StringTable_ Type *stringTable,
in char *st);

adds character array st to string table stringTable

Dr. Thomas Tensi 2009-10-08 48

Revised Linker Documentation 6.3 Linker Specific Modules

‘Bankiug‘ . ‘Cochutput ‘(\J;dCchucucc ‘\ Library ‘ListingUpdatcr‘ ‘MapFich,—’w } T:rgct ‘
‘ Mo(:ulc‘ ‘ NolCEMapFile ‘ ‘ Parser ‘ ‘ Scanner ‘ ‘ Srrmgl‘a‘b\le E;;# Symbol F:ii ‘ Gameboy ‘ ‘ other platform ‘

) - / . ~
- - / . S~
- /

/

,

MultiMap - /” IntegerMap \\\
A o
/

!
/
1
! " N
. ' N
, h \

Figure 16: Module Dependencies of “Symbol” Module

6.3.13 Module “Symbol”

This module provides all services for handling external symbols within the SDCC
linker.

A symbol has a name, some segment and address which may be set and queried.
When a symbol is newly introduced one has to tell whether this introduction is a
symbol definition or symbol reference. This property may also be queried.

For interbank calls a symbol may be split into a real and a surrogate symbol. It is also
possible to get a list of referenced but undefined symbols (necessary when checking
the libraries).

include ”file.h”

include ”globdefs.h”
include ”list.h”

include ”set.h”

include ”string.h”
include ”target.h”
include ”typedescriptor.h”

typedef struct Symbol__Record *«Symbol_Type;
a external or internal symbol within the linker (as an opaque type)

typedef List_Type Symbol_List;

a list of symbols

include ”area.h”

extern TypeDescriptor_Type Symbol_typeDescriptor;

variable used for describing the type properties when symbol objects occur in
generic types like lists

void Symbol_initialize (in Boolean platformIsCaseSensitive);

sets up all internal data structures; platformIsCaseSensitive tells whether
case matters for identifiers or not

Dr. Thomas Tensi 2009-10-08 49

Revised Linker Documentation 6.3 Linker Specific Modules

void Symbol_finalize (void);

cleans up all internal data structures

Symbol_Type Symbol_make (in String_Type symbolName, in Boolean isDefinition,
in Target_Address startAddress);

makes a new symbol with symbolName; additionally it is specified whether this
is a definition and the startAddress

Symbol_Type Symbol-makeBySplit (in Symbol_Type oldSymbol,
in String_Type symbolName);

splits 01dSymbol and creates new symbol with symbolName; all references to
0ldSymbol are transferred to new symbol; the new symbol is referenced but
undefined, while the old symbol is defined but unreferenced

void Symbol_destroy (inout Symbol_Type xsymbol);
destroys symbol

void Symbol_getName (in Symbol_Type symbol, out String_Type *name);

returns name of symbol in name

Area_Segment Symbol_getSegment (in Symbol Type symbol);

returns segment of symbol

Boolean Symbol_isDefined (in Symbol_Type symbol);

tells whether symbol is defined in some module

Boolean Symbol_isSurrogate (in Symbol_Type symbol);
tells whether symbol is a surrogate symbol (used for banking)

void Symbol_setAddressForName (in String_Type symbolName,
in Target_Address address);

sets address of existing symbol with symbolName to address

Symbol_Type Symbol_lookup (in String-Type symbolName);
returns symbol with symbolName or NULL when not found

Target_Address Symbol_absoluteAddress (in Symbol_Type symbol);
returns absolute address of symbol (by adding the segment base address)

void Symbol_getUndefinedSymbolList (inout Symbol_List *undefinedSymbolList);

returns list of undefined symbols in undefinedSymbolList

void Symbol_checkForUndefinedSymbols (inout File_Type xfile);

scans the table of symbols for referenced but undefined symbols; for each of
those symbols a message is output to file telling the module where a reference
has been made

void Symbol_toString (in Symbol_Type symbol, out String_Type *representation);

constructs a printable representation of symbol and its internal data (for debug-
ging purposes) and concatenates it to representation

Dr. Thomas Tensi 2009-10-08 50

Revised Linker Documentation 6.4 Platform Modules

6.4 Platform Modules

/
‘Baniing‘ ‘Code()utput ‘ ‘CodeSequeuce‘ ‘Library‘ ‘ListingUpdater‘

MapFile - ‘ Target ‘
‘Modulo‘ ‘NolCEMapFilo‘ ‘ Parser‘ ‘ Scanner‘ ‘ StringTablo‘ ‘Symbnl LT ' ’// ‘ Gam:k.my ‘ ‘ other platform ‘

MultiMap StringList //’ IntegerMap Set
/(/
/
List TypeDescriptor Error

Figure 17: Module Dependencies of “Target” Module

6.4.1 Module “Target”

This module provides all services for specifying target specific configuration informa-
tion within the SDCC linker.

include ”banking.h”
include ”globdefs.h”
include ”string.h”

include ”stringlist.h”

typedef UINT16 Target_Address;
target addresses are 16 bit

define Target_undefinedBank ...
undefined value for a bank number

typedef int Target_Bank;
bank number type

typedef Target_Bank (xTarget_BankAnalysisProc) (in String_ Type segmentName);

type for routines parsing the current segment with segmentName of emitted code
for ROM bank switching

typedef UINTS8 (xTarget_-CodeQueryProc)(in Target_Bank bank,
in Target_Address address);

type for routines returning the associated emitted code byte for bank and address

typedef void (xTarget_CommandLineHandleProc)(in String-Type mainFileNamePrefix,
in StringList_Type argumentList,
inout Boolean optionIsHandledList[]);

Dr. Thomas Tensi 2009-10-08 51

Revised Linker Documentation 6.4 Platform Modules

type for routines parsing the command line options in argumentList for op-
tions relevant for this platform; all options where optionIsHandledList is true
have already been processed before; when an option is used by that routine,
optionIsHandledList is also set to true; mainFileNamePrefix tells the name
of the main file passed as parameter without extension

typedef void (xTarget_UsagelnfoProc)(out String_Type xst);

type for routines returning a string with an indented line list (separated by
newlines) with platform specific options as a usage info

typedef void (xTarget_InitializationProc)(void);

type for routines setting up module internal data

typedef void (xTarget_FinalizationProc)(void);

type for routines cleaning up module internal data

typedef struct {
Boolean isBigEndian;
Boolean isCaseSensitive;
Target_BankAnalysisProc getBankFromSegmentName;
Target_CodeQueryProc getCodeByte;
Target_UsagelnfoProc giveUsagelnfo;
Target_CommandLineHandleProc handleCommandLineOptions;
Target_InitializationProc initialize;
Target_FinalizationProc finalize;
Banking_Configuration xbankingConfiguration;
} Target_Type;
type to tell several properties of target platform like endianness, case sensitiv-
ity of names, banking configuration, callback routines for rom bank switching,
querying for bytes in the emitted code, command line option parsing, giving
usage information for target specific options and setting up and tearing down
the platform specific data; each of those routines may be NULL when it is not
used in this target platform

extern Target_Type Target_info;

variable containing the information about the current target platform

void Target_initialize (void);

sets up module internal data

void Target_finalize (void);
cleans up module internal data

void Target_setInfo (in String_Type platformName);
sets info for platform specified by platformName

Dr. Thomas Tensi 2009-10-08 52

Revised Linker Documentation

‘Ban{(ing‘ ‘CndeO’utput ‘ ‘CndeSe:quence‘ ‘Libra‘r} .. ‘MapFile r . ‘ Target ‘
.. - 7
‘Modulc‘ ‘NOICEM;}pF‘ilc‘ i éamcboy ‘ ‘ other platform ‘

List TypeDescriptor

Figure 18: Module Dependencies of “Gameboy” Module

6.4.2 Module “Gameboy target”

Gameboy This module provides the target specific services for the Gameboy target
within the generic SDCC linker.

based on the module lkgb.c by Pascal Felber

include ”../target.h”

extern Target_Type Gameboy_targetInfo;

7 Appendix: File Formats

7.1 Object File

The following EBNF-grammar gives the token structure of an object file used
as input to the linker.

Tokens are either operators, identifiers, numbers, newlines and comments. White
space (like blanks or tabulators) is necessary to seperate numbers and identifiers.
Note that a newline is no valid whitespace but a token on its own.

Dr. Thomas Tensi 2009-10-08 53

Revised Linker Documentation

7.2 Library File

address = word .
areaCount = number .
arealndex = word .
areaMode == word .
areaDefinition ::= arealine { symbolLine } { codeLine relocLine } .
arealine = A’ areaName ’size’ number ’flags’ number
newline .
codeLine := ’T’ address { number } newline .
endiannessChar = ’H’ |’L’ .
headerLine := °’H’ areaCount ’areas’ symbolCount ’global’
’symbols’ newline .
moduleLine = ’M’ moduleName newline .
moduleName = identifier .

objectFile

radixLine headerLine moduleLine | optionsLine |
{ areaDefinition } .

optionsLine := 0’ { (identifier | number | operator) } newline .
radixChar = X’ ‘ ’D? ‘ Q.
radixLine = radixChar endiannessChar newline .
relocationData = number .
relocationIndex = number .
relocationInfo = relocationKind relocationIndex relocationData, .
relocationKind = number .
relocLine = R’ areaMode arealndex { relocationInfo } newline.
symbolCount = number .
symbolLine := S’ identifier (’Def’ | ’Ref’) number newline .
word = number number .

7.2 Library File

The following EBNF-grammar gives the token structure of an library file used
as input to the linker.

Note that the revised linker does not support the SDCCLIB libraries containing
directly embedded and indexed object files. The only files supported are libraries
referencing external object files by name.
fileName ::=
libraryFile ::=

< string without newline character>> newline .
{ fileName newline } .

References

[Baldwin09] Alan Baldwin. ASzxxz Cross Assemblers.
Kent State University, Kent, Ohio. (2009).
http://shop-pdp.kent.edu/ashtml/asxxxx.htm

Dr. Thomas Tensi 2009-10-08 54

